Timezone: »

Neural Relightable Participating Media Rendering
Quan Zheng · Gurprit Singh · Hans-peter Seidel

Wed Dec 08 12:30 AM -- 02:00 AM (PST) @ Virtual

Learning neural radiance fields of a scene has recently allowed realistic novel view synthesis of the scene, but they are limited to synthesize images under the original fixed lighting condition. Therefore, they are not flexible for the eagerly desired tasks like relighting, scene editing and scene composition. To tackle this problem, several recent methods propose to disentangle reflectance and illumination from the radiance field. These methods can cope with solid objects with opaque surfaces but participating media are neglected. Also, they take into account only direct illumination or at most one-bounce indirect illumination, thus suffer from energy loss due to ignoring the high-order indirect illumination. We propose to learn neural representations for participating media with a complete simulation of global illumination. We estimate direct illumination via ray tracing and compute indirect illumination with spherical harmonics. Our approach avoids computing the lengthy indirect bounces and does not suffer from energy loss. Our experiments on multiple scenes show that our approach achieves superior visual quality and numerical performance compared to state-of-the-art methods, and it can generalize to deal with solid objects with opaque surfaces as well.

Author Information

Quan Zheng (Max Planck Institute for Informatics)
Gurprit Singh (Saarland Informatics Campus, Max-Planck Institute)
Hans-peter Seidel (Max-Planck Institute)

More from the Same Authors

  • 2022 Spotlight: Autoinverse: Uncertainty Aware Inversion of Neural Networks »
    Navid Ansari · Hans-peter Seidel · Nima Vahidi Ferdowsi · Vahid Babaei
  • 2022 Spotlight: Lightning Talks 4B-1 »
    Alexandra Senderovich · Zhijie Deng · Navid Ansari · Xuefei Ning · Yasmin Salehi · Xiang Huang · Chenyang Wu · Kelsey Allen · Jiaqi Han · Nikita Balagansky · Tatiana Lopez-Guevara · Tianci Li · Zhanhong Ye · Zixuan Zhou · Feng Zhou · Ekaterina Bulatova · Daniil Gavrilov · Wenbing Huang · Dennis Giannacopoulos · Hans-peter Seidel · Anton Obukhov · Kimberly Stachenfeld · Hongsheng Liu · Jun Zhu · Junbo Zhao · Hengbo Ma · Nima Vahidi Ferdowsi · Zongzhang Zhang · Vahid Babaei · Jiachen Li · Alvaro Sanchez Gonzalez · Yang Yu · Shi Ji · Maxim Rakhuba · Tianchen Zhao · Yiping Deng · Peter Battaglia · Josh Tenenbaum · Zidong Wang · Chuang Gan · Changcheng Tang · Jessica Hamrick · Kang Yang · Tobias Pfaff · Yang Li · Shuang Liang · Min Wang · Huazhong Yang · Haotian CHU · Yu Wang · Fan Yu · Bei Hua · Lei Chen · Bin Dong
  • 2022 Poster: Autoinverse: Uncertainty Aware Inversion of Neural Networks »
    Navid Ansari · Hans-peter Seidel · Nima Vahidi Ferdowsi · Vahid Babaei