`

Timezone: »

 
Poster
Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs
jiafan he · Dongruo Zhou · Quanquan Gu

Thu Dec 09 12:30 AM -- 02:00 AM (PST) @ None #None
We study the reinforcement learning problem for discounted Markov Decision Processes (MDPs) under the tabular setting. We propose a model-based algorithm named UCBVI-$\gamma$, which is based on the \emph{optimism in the face of uncertainty principle} and the Bernstein-type bonus. We show that UCBVI-$\gamma$ achieves an $\tilde{O}\big({\sqrt{SAT}}/{(1-\gamma)^{1.5}}\big)$ regret, where $S$ is the number of states, $A$ is the number of actions, $\gamma$ is the discount factor and $T$ is the number of steps. In addition, we construct a class of hard MDPs and show that for any algorithm, the expected regret is at least $\tilde{\Omega}\big({\sqrt{SAT}}/{(1-\gamma)^{1.5}}\big)$. Our upper bound matches the minimax lower bound up to logarithmic factors, which suggests that UCBVI-$\gamma$ is nearly minimax optimal for discounted MDPs.

Author Information

jiafan he (University of California, Los Angeles)
Dongruo Zhou (UCLA)
Quanquan Gu (UCLA)

More from the Same Authors