Timezone: »
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiable renderers. Many previous learning-based approaches for inverse graphics adopt rasterization-based renderers and assume naive lighting and material models, which often fail to account for non-Lambertian, specular reflections commonly observed in the wild. In this work, we propose DIBR++, a hybrid differentiable renderer which supports these photorealistic effects by combining rasterization and ray-tracing, taking the advantage of their respective strengths---speed and realism. Our renderer incorporates environmental lighting and spatially-varying material models to efficiently approximate light transport, either through direct estimation or via spherical basis functions. Compared to more advanced physics-based differentiable renderers leveraging path tracing, DIBR++ is highly performant due to its compact and expressive shading model, which enables easy integration with learning frameworks for geometry, reflectance and lighting prediction from a single image without requiring any ground-truth. We experimentally demonstrate that our approach achieves superior material and lighting disentanglement on synthetic and real data compared to existing rasterization-based approaches and showcase several artistic applications including material editing and relighting.
Author Information
Wenzheng Chen (University of Toronto)
Joey Litalien (McGill University)
Jun Gao (University of Toronto; Nvidia)
Zian Wang (Tsinghua University)
Clement Fuji Tsang (Université de Technologie de Troyes, France)
Sameh Khamis (University of Maryland)
Or Litany (NVIDIA)
Sanja Fidler (University of Toronto)
More from the Same Authors
-
2022 Spotlight: GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images »
Jun Gao · Tianchang Shen · Zian Wang · Wenzheng Chen · Kangxue Yin · Daiqing Li · Or Litany · Zan Gojcic · Sanja Fidler -
2022 Poster: LION: Latent Point Diffusion Models for 3D Shape Generation »
xiaohui zeng · Arash Vahdat · Francis Williams · Zan Gojcic · Or Litany · Sanja Fidler · Karsten Kreis -
2022 Poster: GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images »
Jun Gao · Tianchang Shen · Zian Wang · Wenzheng Chen · Kangxue Yin · Daiqing Li · Or Litany · Zan Gojcic · Sanja Fidler -
2021 Poster: Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis »
Tianchang Shen · Jun Gao · Kangxue Yin · Ming-Yu Liu · Sanja Fidler -
2021 Poster: Scalable Neural Data Server: A Data Recommender for Transfer Learning »
Tianshi Cao · Sasha (Alexandre) Doubov · David Acuna · Sanja Fidler -
2021 Poster: EditGAN: High-Precision Semantic Image Editing »
Huan Ling · Karsten Kreis · Daiqing Li · Seung Wook Kim · Antonio Torralba · Sanja Fidler -
2021 Poster: ATISS: Autoregressive Transformers for Indoor Scene Synthesis »
Despoina Paschalidou · Amlan Kar · Maria Shugrina · Karsten Kreis · Andreas Geiger · Sanja Fidler -
2021 Poster: Don’t Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence »
Tianshi Cao · Alex Bie · Arash Vahdat · Sanja Fidler · Karsten Kreis -
2021 Poster: Towards Optimal Strategies for Training Self-Driving Perception Models in Simulation »
David Acuna · Jonah Philion · Sanja Fidler -
2020 : Sanja Fidler »
Sanja Fidler -
2020 Poster: Variational Amodal Object Completion »
Huan Ling · David Acuna · Karsten Kreis · Seung Wook Kim · Sanja Fidler -
2020 Poster: Learning Deformable Tetrahedral Meshes for 3D Reconstruction »
Jun Gao · Wenzheng Chen · Tommy Xiang · Alec Jacobson · Morgan McGuire · Sanja Fidler -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Sanja Fidler - TBA »
Sanja Fidler -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Sanja Fidler »
Sanja Fidler -
2019 Poster: Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer »
Wenzheng Chen · Huan Ling · Jun Gao · Edward Smith · Jaakko Lehtinen · Alec Jacobson · Sanja Fidler -
2019 Demonstration: Toronto Annotation Suite »
Amlan Kar · Sanja Fidler · Jun Gao · Seung Wook Kim · Huan Ling -
2018 Poster: A Neural Compositional Paradigm for Image Captioning »
Bo Dai · Sanja Fidler · Dahua Lin -
2017 : Panel Discussion »
Felix Hill · Olivier Pietquin · Jack Gallant · Raymond Mooney · Sanja Fidler · Chen Yu · Devi Parikh -
2017 : Connecting high-level semantics with low-level vision »
Sanja Fidler -
2017 Poster: Teaching Machines to Describe Images with Natural Language Feedback »
Huan Ling · Sanja Fidler -
2016 Poster: Proximal Deep Structured Models »
Shenlong Wang · Sanja Fidler · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: 3D Object Proposals for Accurate Object Class Detection »
Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun -
2012 Poster: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Spotlight: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2009 Poster: Evaluating multi-class learning strategies in a generative hierarchical framework for object detection »
Sanja Fidler · Marko Boben · Ales Leonardis