Timezone: »

Efficient Mirror Descent Ascent Methods for Nonsmooth Minimax Problems
Feihu Huang · Xidong Wu · Heng Huang

Wed Dec 08 04:30 PM -- 06:00 PM (PST) @ Virtual
In the paper, we propose a class of efficient mirror descent ascent methods to solve the nonsmooth nonconvex-strongly-concave minimax problems by using dynamic mirror functions, and introduce a convergence analysis framework to conduct rigorous theoretical analysis for our mirror descent ascent methods. For our stochastic algorithms, we first prove that the mini-batch stochastic mirror descent ascent (SMDA) method obtains a gradient complexity of $O(\kappa^3\epsilon^{-4})$ for finding an $\epsilon$-stationary point, where $\kappa$ denotes the condition number. Further, we propose an accelerated stochastic mirror descent ascent (VR-SMDA) method based on the variance reduced technique. We prove that our VR-SMDA method achieves a lower gradient complexity of $O(\kappa^3\epsilon^{-3})$. For our deterministic algorithm, we prove that our deterministic mirror descent ascent (MDA) achieves a lower gradient complexity of $O(\sqrt{\kappa}\epsilon^{-2})$ under mild conditions, which matches the best known complexity in solving smooth nonconvex-strongly-concave minimax optimization. We conduct the experiments on fair classifier and robust neural network training tasks to demonstrate the efficiency of our new algorithms.

Author Information

Feihu Huang (University of Pittsburgh)
Xidong Wu (University of Pittsburgh)
Heng Huang (University of Pittsburgh)

More from the Same Authors