Timezone: »

 
Poster
Compressive Visual Representations
Kuang-Huei Lee · Anurag Arnab · Sergio Guadarrama · John Canny · Ian Fischer

Tue Dec 07 08:30 AM -- 10:00 AM (PST) @ Virtual

Learning effective visual representations that generalize well without human supervision is a fundamental problem in order to apply Machine Learning to a wide variety of tasks. Recently, two families of self-supervised methods, contrastive learning and latent bootstrapping, exemplified by SimCLR and BYOL respectively, have made significant progress. In this work, we hypothesize that adding explicit information compression to these algorithms yields better and more robust representations. We verify this by developing SimCLR and BYOL formulations compatible with the Conditional Entropy Bottleneck (CEB) objective, allowing us to both measure and control the amount of compression in the learned representation, and observe their impact on downstream tasks. Furthermore, we explore the relationship between Lipschitz continuity and compression, showing a tractable lower bound on the Lipschitz constant of the encoders we learn. As Lipschitz continuity is closely related to robustness, this provides a new explanation for why compressed models are more robust. Our experiments confirm that adding compression to SimCLR and BYOL significantly improves linear evaluation accuracies and model robustness across a wide range of domain shifts. In particular, the compressed version of BYOL achieves 76.0% Top-1 linear evaluation accuracy on ImageNet with ResNet-50, and 78.8% with ResNet-50 2x.

Author Information

Kuang-Huei Lee (Google Brain)
Anurag Arnab (University of Oxford)
Sergio Guadarrama (Google Research)
John Canny (UC Berkeley)
Ian Fischer (Google)

More from the Same Authors

  • 2021 : An Empirical Investigation of Representation Learning for Imitation »
    Cynthia Chen · Sam Toyer · Cody Wild · Scott Emmons · Ian Fischer · Kuang-Huei Lee · Neel Alex · Steven Wang · Ping Luo · Stuart Russell · Pieter Abbeel · Rohin Shah
  • 2021 : DCUR: Data Curriculum for Teaching via Samples with Reinforcement Learning »
    Daniel Seita · Abhinav Gopal · Mandi Zhao · John Canny
  • 2022 Poster: Multi-Game Decision Transformers »
    Kuang-Huei Lee · Ofir Nachum · Mengjiao (Sherry) Yang · Lisa Lee · Daniel Freeman · Sergio Guadarrama · Ian Fischer · Winnie Xu · Eric Jang · Henryk Michalewski · Igor Mordatch
  • 2022 Poster: Deep Hierarchical Planning from Pixels »
    Danijar Hafner · Kuang-Huei Lee · Ian Fischer · Pieter Abbeel
  • 2021 : Invited talk 5 »
    Ian Fischer
  • 2021 Poster: TokenLearner: Adaptive Space-Time Tokenization for Videos »
    Michael Ryoo · AJ Piergiovanni · Anurag Arnab · Mostafa Dehghani · Anelia Angelova
  • 2021 Poster: Attention Bottlenecks for Multimodal Fusion »
    Arsha Nagrani · Shan Yang · Anurag Arnab · Aren Jansen · Cordelia Schmid · Chen Sun
  • 2020 Poster: Predictive Information Accelerates Learning in RL »
    Kuang-Huei Lee · Ian Fischer · Anthony Liu · Yijie Guo · Honglak Lee · John Canny · Sergio Guadarrama
  • 2020 Poster: An Unsupervised Information-Theoretic Perceptual Quality Metric »
    Sangnie Bhardwaj · Ian Fischer · Johannes Ballé · Troy Chinen
  • 2019 : Coffee + Posters »
    Changhao Chen · Nils Gählert · Edouard Leurent · Johannes Lehner · Apratim Bhattacharyya · Harkirat Singh Behl · Teck Yian Lim · Shiho Kim · Jelena Novosel · Błażej Osiński · Arindam Das · Ruobing Shen · Jeffrey Hawke · Joachim Sicking · Babak Shahian Jahromi · Theja Tulabandhula · Claudio Michaelis · Evgenia Rusak · WENHANG BAO · Hazem Rashed · JP Chen · Amin Ansari · Jaekwang Cha · Mohamed Zahran · Daniele Reda · Jinhyuk Kim · Kim Dohyun · Ho Suk · Junekyo Jhung · Alexander Kister · Matthias Fahrland · Adam Jakubowski · Piotr Miłoś · Jean Mercat · Bruno Arsenali · Silviu Homoceanu · Xiao-Yang Liu · Philip Torr · Ahmad El Sallab · Ibrahim Sobh · Anurag Arnab · Krzysztof Galias
  • 2019 : Poster Session »
    Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis
  • 2018 Poster: GILBO: One Metric to Measure Them All »
    Alexander Alemi · Ian Fischer
  • 2018 Spotlight: GILBO: One Metric to Measure Them All »
    Alexander Alemi · Ian Fischer
  • 2016 : Invited Talk: Optimizing Machine Learning and Deep Learning (John Canny, UC Berkeley & Google Research) »
    John Canny