Timezone: »
Unsupervised domain adaptation which aims to adapt models trained on a labeled source domain to a completely unlabeled target domain has attracted much attention in recent years. While many domain adaptation techniques have been proposed for images, the problem of unsupervised domain adaptation in videos remains largely underexplored. In this paper, we introduce Contrast and Mix (CoMix), a new contrastive learning framework that aims to learn discriminative invariant feature representations for unsupervised video domain adaptation. First, unlike existing methods that rely on adversarial learning for feature alignment, we utilize temporal contrastive learning to bridge the domain gap by maximizing the similarity between encoded representations of an unlabeled video at two different speeds as well as minimizing the similarity between different videos played at different speeds. Second, we propose a novel extension to the temporal contrastive loss by using background mixing that allows additional positives per anchor, thus adapting contrastive learning to leverage action semantics shared across both domains. Moreover, we also integrate a supervised contrastive learning objective using target pseudo-labels to enhance discriminability of the latent space for video domain adaptation. Extensive experiments on several benchmark datasets demonstrate the superiority of our proposed approach over state-of-the-art methods. Project page: https://cvir.github.io/projects/comix.
Author Information
Aadarsh Sahoo (Indian Institute of Technology Kharagpur)
Rutav Shah (Indian Institute of Technology, Kharagpur)
Rameswar Panda (MIT-IBM Watson AI Lab)
Kate Saenko (Boston University & MIT-IBM Watson AI Lab, IBM Research)
Abir Das (Indian Institute of Technology Kharagpur)
More from the Same Authors
-
2021 Spotlight: Look at What I’m Doing: Self-Supervised Spatial Grounding of Narrations in Instructional Videos »
Reuben Tan · Bryan Plummer · Kate Saenko · Hailin Jin · Bryan Russell -
2021 : Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation »
Aadarsh Sahoo · Rameswar Panda · Rogerio Feris · Kate Saenko · Abir Das -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2021 : Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining and Consistency »
Samarth Mishra · Kate Saenko · Venkatesh Saligrama -
2022 : Fifteen-minute Competition Overview Video »
Kate Saenko · Samarth Mishra · Dina Bashkirova · Vitaly Ablavsky · Sarah Bargal · Rachel Lai · Piotr Teterwak · James Akl · Fadi Alladkani · Donghyun Kim · Berk Calli -
2022 Competition: VisDA 2022 Challenge: Sim2Real Domain Adaptation for Industrial Recycling »
Dina Bashkirova · Samarth Mishra · Piotr Teterwak · Donghyun Kim · Rachel Lai · Fadi Alladkani · James Akl · Vitaly Ablavsky · Sarah Bargal · Berk Calli · Kate Saenko -
2022 : Challenge Introduction »
Dina Bashkirova · Samarth Mishra · Piotr Teterwak · Donghyun Kim · Sarah Bargal · Diala Lteif · Kate Saenko -
2022 : Human Evaluation of Text-to-Image Models on a Multi-Task Benchmark »
Vitali Petsiuk · Alexander E. Siemenn · Saisamrit Surbehera · Qi Qi Chin · Keith Tyser · Gregory Hunter · Arvind Raghavan · Yann Hicke · Bryan Plummer · Ori Kerret · Tonio Buonassisi · Kate Saenko · Armando Solar-Lezama · Iddo Drori -
2022 Poster: DualCoOp: Fast Adaptation to Multi-Label Recognition with Limited Annotations »
Ximeng Sun · Ping Hu · Kate Saenko -
2022 Poster: Finding Differences Between Transformers and ConvNets Using Counterfactual Simulation Testing »
Nataniel Ruiz · Sarah Bargal · Cihang Xie · Kate Saenko · Stan Sclaroff -
2022 Poster: How Transferable are Video Representations Based on Synthetic Data? »
Yo-whan Kim · Samarth Mishra · SouYoung Jin · Rameswar Panda · Hilde Kuehne · Leonid Karlinsky · Venkatesh Saligrama · Kate Saenko · Aude Oliva · Rogerio Feris -
2022 Poster: FETA: Towards Specializing Foundational Models for Expert Task Applications »
Amit Alfassy · Assaf Arbelle · Oshri Halimi · Sivan Harary · Roei Herzig · Eli Schwartz · Rameswar Panda · Michele Dolfi · Christoph Auer · Peter Staar · Kate Saenko · Rogerio Feris · Leonid Karlinsky -
2021 : [O3] Reinforcement Explanation Learning »
Siddhant Agarwal · OWAIS IQBAL · Sree Aditya Buridi · Madda Manjusha · Abir Das -
2021 Workshop: Distribution shifts: connecting methods and applications (DistShift) »
Shiori Sagawa · Pang Wei Koh · Fanny Yang · Hongseok Namkoong · Jiashi Feng · Kate Saenko · Percy Liang · Sarah Bird · Sergey Levine -
2021 Poster: Dynamic Distillation Network for Cross-Domain Few-Shot Recognition with Unlabeled Data »
Ashraful Islam · Chun-Fu (Richard) Chen · Rameswar Panda · Leonid Karlinsky · Rogerio Feris · Richard J. Radke -
2021 Poster: OpenMatch: Open-Set Semi-supervised Learning with Open-set Consistency Regularization »
Kuniaki Saito · Donghyun Kim · Kate Saenko -
2021 Poster: IA-RED$^2$: Interpretability-Aware Redundancy Reduction for Vision Transformers »
Bowen Pan · Rameswar Panda · Yifan Jiang · Zhangyang Wang · Rogerio Feris · Aude Oliva -
2021 Poster: Look at What I’m Doing: Self-Supervised Spatial Grounding of Narrations in Instructional Videos »
Reuben Tan · Bryan Plummer · Kate Saenko · Hailin Jin · Bryan Russell -
2021 : VisDA21: Visual Domain Adaptation + Q&A »
Kate Saenko · Kuniaki Saito · Donghyun Kim · Samarth Mishra · Ben Usman · Piotr Teterwak · Dina Bashkirova · Dan Hendrycks -
2020 Poster: Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable Neural Distribution Alignment »
Ben Usman · Avneesh Sud · Nick Dufour · Kate Saenko -
2020 Poster: Uncertainty-Aware Learning for Zero-Shot Semantic Segmentation »
Ping Hu · Stan Sclaroff · Kate Saenko -
2020 Poster: Universal Domain Adaptation through Self Supervision »
Kuniaki Saito · Donghyun Kim · Stan Sclaroff · Kate Saenko -
2020 Poster: Auxiliary Task Reweighting for Minimum-data Learning »
Baifeng Shi · Judy Hoffman · Kate Saenko · Trevor Darrell · Huijuan Xu -
2020 Poster: AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning »
Ximeng Sun · Rameswar Panda · Rogerio Feris · Kate Saenko -
2019 Poster: Adversarial Self-Defense for Cycle-Consistent GANs »
Dina Bashkirova · Ben Usman · Kate Saenko -
2018 Poster: Speaker-Follower Models for Vision-and-Language Navigation »
Daniel Fried · Ronghang Hu · Volkan Cirik · Anna Rohrbach · Jacob Andreas · Louis-Philippe Morency · Taylor Berg-Kirkpatrick · Kate Saenko · Dan Klein · Trevor Darrell -
2016 : Invited Talk: Domain Adaption for Perception and Action (Kate Saenko, Boston University) »
Kate Saenko -
2015 Workshop: Transfer and Multi-Task Learning: Trends and New Perspectives »
Anastasia Pentina · Christoph Lampert · Sinno Jialin Pan · Mingsheng Long · Judy Hoffman · Baochen Sun · Kate Saenko