`

Timezone: »

 
Poster
Revisit Multimodal Meta-Learning through the Lens of Multi-Task Learning
Milad Abdollahzadeh · Touba Malekzadeh · Ngai-Man (Man) Cheung

Thu Dec 09 12:30 AM -- 02:00 AM (PST) @ Virtual

Multimodal meta-learning is a recent problem that extends conventional few-shot meta-learning by generalizing its setup to diverse multimodal task distributions. This setup makes a step towards mimicking how humans make use of a diverse set of prior skills to learn new skills. Previous work has achieved encouraging performance. In particular, in spite of the diversity of the multimodal tasks, previous work claims that a single meta-learner trained on a multimodal distribution can sometimes outperform multiple specialized meta-learners trained on individual unimodal distributions. The improvement is attributed to knowledge transfer between different modes of task distributions. However, there is no deep investigation to verify and understand the knowledge transfer between multimodal tasks. Our work makes two contributions to multimodal meta-learning. First, we propose a method to quantify knowledge transfer between tasks of different modes at a micro-level. Our quantitative, task-level analysis is inspired by the recent transference idea from multi-task learning. Second, inspired by hard parameter sharing in multi-task learning and a new interpretation of related work, we propose a new multimodal meta-learner that outperforms existing work by considerable margins. While the major focus is on multimodal meta-learning, our work also attempts to shed light on task interaction in conventional meta-learning. The code for this project is available at https://miladabd.github.io/KML.

Author Information

Milad Abdollahzadeh (Singapore University of Technology and Design (SUTD))

A husband, A father, and A lifelong learner

Touba Malekzadeh (Singapore University of Technology and Design)
Ngai-Man (Man) Cheung (Singapore University of Technology and Design)

More from the Same Authors

  • 2019 : Poster Session »
    Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis
  • 2019 Poster: Self-supervised GAN: Analysis and Improvement with Multi-class Minimax Game »
    Ngoc-Trung Tran · Viet-Hung Tran · Bao-Ngoc Nguyen · Linxiao Yang · Ngai-Man (Man) Cheung