Timezone: »

 
Poster
Unifying Gradient Estimators for Meta-Reinforcement Learning via Off-Policy Evaluation
Yunhao Tang · Tadashi Kozuno · Mark Rowland · Remi Munos · Michal Valko

Tue Dec 07 08:30 AM -- 10:00 AM (PST) @

Model-agnostic meta-reinforcement learning requires estimating the Hessian matrix of value functions. This is challenging from an implementation perspective, as repeatedly differentiating policy gradient estimates may lead to biased Hessian estimates. In this work, we provide a unifying framework for estimating higher-order derivatives of value functions, based on off-policy evaluation. Our framework interprets a number of prior approaches as special cases and elucidates the bias and variance trade-off of Hessian estimates. This framework also opens the door to a new family of estimates, which can be easily implemented with auto-differentiation libraries, and lead to performance gains in practice.

Author Information

Yunhao Tang (Columbia University)

I am a PhD student at Columbia IEOR. My research interests are reinforcement learning and approximate inference.

Tadashi Kozuno (University of Alberta)

Tadashi Kozuno is a postdoc at the University of Alberta. He obtained bachelor and master degrees on neuroscience from Osaka university, and a PhD degree from Okinawa Inst. of Sci. and Tech. His main interest lies in efficient decision making from both theoretical and biological sides.

Mark Rowland (DeepMind)
Remi Munos (DeepMind)
Michal Valko (DeepMind Paris / Inria / ENS Paris-Saclay)
Michal Valko

Michal is a machine learning scientist in DeepMind Paris, tenured researcher at Inria, and the lecturer of the master course Graphs in Machine Learning at l'ENS Paris-Saclay. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimizing the data that humans need to spend inspecting, classifying, or “tuning” the algorithms. That is why he is working on methods and settings that are able to deal with minimal feedback, such as deep reinforcement learning, bandit algorithms, or self-supervised learning. Michal is actively working on represenation learning and building worlds models. He is also working on deep (reinforcement) learning algorithm that have some theoretical underpinning. He has also worked on sequential algorithms with structured decisions where exploiting the structure leads to provably faster learning. He received his Ph.D. in 2011 from the University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos before taking a permanent position at Inria in 2012.

More from the Same Authors