Timezone: »
Poster
Logarithmic Regret from Sublinear Hints
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit
We consider the online linear optimization problem, where at every step the algorithm plays a point $x_t$ in the unit ball, and suffers loss $\langle c_t, x_t \rangle$ for some cost vector $c_t$ that is then revealed to the algorithm. Recent work showed that if an algorithm receives a _hint_ $h_t$ that has non-trivial correlation with $c_t$ before it plays $x_t$, then it can achieve a regret guarantee of $O(\log T)$, improving on the bound of $\Theta(\sqrt{T})$ in the standard setting. In this work, we study the question of whether an algorithm really requires a hint at _every_ time step. Somewhat surprisingly, we show that an algorithm can obtain $O(\log T)$ regret with just $O(\sqrt{T})$ hints under a natural query model; in contrast, we also show that $o(\sqrt{T})$ hints cannot guarantee better than $\Omega(\sqrt{T})$ regret. We give two applications of our result, to the well-studied setting of {\em optimistic} regret bounds, and to the problem of online learning with abstention.
Author Information
Aditya Bhaskara (University of Utah)
Ashok Cutkosky (Boston University)
Ravi Kumar (Google)
Manish Purohit (Google)
More from the Same Authors
-
2021 Spotlight: Online Selective Classification with Limited Feedback »
Aditya Gangrade · Anil Kag · Ashok Cutkosky · Venkatesh Saligrama -
2022 Poster: Private Isotonic Regression »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2022 Poster: Anonymized Histograms in Intermediate Privacy Models »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2021 Oral: High-probability Bounds for Non-Convex Stochastic Optimization with Heavy Tails »
Ashok Cutkosky · Harsh Mehta -
2021 Poster: High-probability Bounds for Non-Convex Stochastic Optimization with Heavy Tails »
Ashok Cutkosky · Harsh Mehta -
2021 Poster: Online Selective Classification with Limited Feedback »
Aditya Gangrade · Anil Kag · Ashok Cutkosky · Venkatesh Saligrama -
2021 Poster: User-Level Differentially Private Learning via Correlated Sampling »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2021 Poster: Deep Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 Poster: Online Knapsack with Frequency Predictions »
Sungjin Im · Ravi Kumar · Mahshid Montazer Qaem · Manish Purohit -
2020 Poster: Adaptive Probing Policies for Shortest Path Routing »
Aditya Bhaskara · Sreenivas Gollapudi · Kostas Kollias · Kamesh Munagala -
2020 Poster: Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Benjamin Moseley · Philip Pham · Sergei Vassilvitskii · Yuyan Wang -
2020 Poster: Online Linear Optimization with Many Hints »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2020 Poster: Online MAP Inference of Determinantal Point Processes »
Aditya Bhaskara · Amin Karbasi · Silvio Lattanzi · Morteza Zadimoghaddam -
2020 Poster: Differentially Private Clustering: Tight Approximation Ratios »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2020 Oral: Differentially Private Clustering: Tight Approximation Ratios »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Contributed Talk - Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Philip Pham -
2019 Poster: On Distributed Averaging for Stochastic k-PCA »
Aditya Bhaskara · Pruthuvi Maheshakya Wijewardena -
2019 Poster: Efficient Rematerialization for Deep Networks »
Ravi Kumar · Manish Purohit · Zoya Svitkina · Erik Vee · Joshua Wang -
2019 Poster: Greedy Sampling for Approximate Clustering in the Presence of Outliers »
Aditya Bhaskara · Sharvaree Vadgama · Hong Xu -
2018 Poster: Mallows Models for Top-k Lists »
Flavio Chierichetti · Anirban Dasgupta · Shahrzad Haddadan · Ravi Kumar · Silvio Lattanzi -
2018 Poster: Distributed Stochastic Optimization via Adaptive SGD »
Ashok Cutkosky · Róbert Busa-Fekete -
2018 Poster: Improving Online Algorithms via ML Predictions »
Manish Purohit · Zoya Svitkina · Ravi Kumar -
2017 Poster: Fair Clustering Through Fairlets »
Flavio Chierichetti · Ravi Kumar · Silvio Lattanzi · Sergei Vassilvitskii -
2017 Poster: Stochastic and Adversarial Online Learning without Hyperparameters »
Ashok Cutkosky · Kwabena A Boahen -
2017 Spotlight: Fair Clustering Through Fairlets »
Flavio Chierichetti · Ravi Kumar · Silvio Lattanzi · Sergei Vassilvitskii -
2016 Poster: Online Convex Optimization with Unconstrained Domains and Losses »
Ashok Cutkosky · Kwabena A Boahen -
2016 Poster: Linear Relaxations for Finding Diverse Elements in Metric Spaces »
Aditya Bhaskara · Mehrdad Ghadiri · Vahab Mirrokni · Ola Svensson -
2014 Poster: Distributed Balanced Clustering via Mapping Coresets »
Mohammadhossein Bateni · Aditya Bhaskara · Silvio Lattanzi · Vahab Mirrokni