Timezone: »
Generative Adversarial Networks (GANs) produce high-quality images but are challenging to train. They need careful regularization, vast amounts of compute, and expensive hyper-parameter sweeps. We make significant headway on these issues by projecting generated and real samples into a fixed, pretrained feature space. Motivated by the finding that the discriminator cannot fully exploit features from deeper layers of the pretrained model, we propose a more effective strategy that mixes features across channels and resolutions. Our Projected GAN improves image quality, sample efficiency, and convergence speed. It is further compatible with resolutions of up to one Megapixel and advances the state-of-the-art Fréchet Inception Distance (FID) on twenty-two benchmark datasets. Importantly, Projected GANs match the previously lowest FIDs up to 40 times faster, cutting the wall-clock time from 5 days to less than 3 hours given the same computational resources.
Author Information
Axel Sauer (University of Tübingen)
Kashyap Chitta (Max Planck Institute for Intelligent Systems)
Jens Müller (Heidelberg University)
Andreas Geiger (MPI Tübingen)
More from the Same Authors
-
2021 : STEP: Segmenting and Tracking Every Pixel »
Mark Weber · Jun Xie · Maxwell Collins · Yukun Zhu · Paul Voigtlaender · Hartwig Adam · Bradley Green · Andreas Geiger · Bastian Leibe · Daniel Cremers · Aljosa Osep · Laura Leal-Taixé · Liang-Chieh Chen -
2022 : PlanT: Explainable Planning Transformers via Object-Level Representations »
Katrin Renz · Kashyap Chitta · Otniel-Bogdan Mercea · A. Sophia Koepke · Zeynep Akata · Andreas Geiger -
2022 : KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients »
Niklas Hanselmann · Katrin Renz · Kashyap Chitta · Apratim Bhattacharyya · Andreas Geiger -
2022 Poster: VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids »
Katja Schwarz · Axel Sauer · Michael Niemeyer · Yiyi Liao · Andreas Geiger -
2021 Poster: On the Frequency Bias of Generative Models »
Katja Schwarz · Yiyi Liao · Andreas Geiger -
2021 Oral: Shape As Points: A Differentiable Poisson Solver »
Songyou Peng · Chiyu Jiang · Yiyi Liao · Michael Niemeyer · Marc Pollefeys · Andreas Geiger -
2021 Poster: ATISS: Autoregressive Transformers for Indoor Scene Synthesis »
Despoina Paschalidou · Amlan Kar · Maria Shugrina · Karsten Kreis · Andreas Geiger · Sanja Fidler -
2021 Poster: Shape As Points: A Differentiable Poisson Solver »
Songyou Peng · Chiyu Jiang · Yiyi Liao · Michael Niemeyer · Marc Pollefeys · Andreas Geiger -
2021 Poster: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images »
Shaofei Wang · Marko Mihajlovic · Qianli Ma · Andreas Geiger · Siyu Tang -
2017 Poster: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Spotlight: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger