Timezone: »
Understanding when and why interpolating methods generalize well has recently been a topic of interest in statistical learning theory. However, systematically connecting interpolating methods to achievable notions of optimality has only received partial attention. In this paper, we ask the question of what is the optimal way to interpolate in linear regression using functions that are linear in the response variable (as the case for the Bayes optimal estimator in ridge regression) and depend on the data, the population covariance of the data, the signal-to-noise ratio and the covariance of the prior for the signal, but do not depend on the value of the signal itself nor the noise vector in the training data. We provide a closed-form expression for the interpolator that achieves this notion of optimality and show that it can be derived as the limit of preconditioned gradient descent with a specific initialization. We identify a regime where the minimum-norm interpolator provably generalizes arbitrarily worse than the optimal response-linear achievable interpolator that we introduce, and validate with numerical experiments that the notion of optimality we consider can be achieved by interpolating methods that only use the training data as input in the case of an isotropic prior. Finally, we extend the notion of optimal response-linear interpolation to random features regression under a linear data-generating model.
Author Information
Eduard Oravkin (University of Oxford)
Patrick Rebeschini (University of Oxford)
More from the Same Authors
-
2023 Poster: A Novel Framework for Policy Mirror Descent with General Parametrization and Linear Convergence »
Carlo Alfano · Rui Yuan · Patrick Rebeschini -
2023 Poster: Optimal Convergence Rate for Exact Policy Mirror Descent in Discounted Markov Decision Processes »
Emmeran Johnson · Ciara Pike-Burke · Patrick Rebeschini -
2021 Poster: Implicit Regularization in Matrix Sensing via Mirror Descent »
Fan Wu · Patrick Rebeschini -
2021 Poster: Distributed Machine Learning with Sparse Heterogeneous Data »
Dominic Richards · Sahand Negahban · Patrick Rebeschini -
2021 Poster: Time-independent Generalization Bounds for SGLD in Non-convex Settings »
Tyler Farghly · Patrick Rebeschini -
2020 Poster: A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval »
Fan Wu · Patrick Rebeschini -
2020 Spotlight: A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval »
Fan Wu · Patrick Rebeschini -
2020 Poster: The Statistical Complexity of Early-Stopped Mirror Descent »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2020 Spotlight: The Statistical Complexity of Early-Stopped Mirror Descent »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2019 Poster: Implicit Regularization for Optimal Sparse Recovery »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2019 Poster: Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up »
Dominic Richards · Patrick Rebeschini -
2019 Poster: Decentralized Cooperative Stochastic Bandits »
David MartÃnez-Rubio · Varun Kanade · Patrick Rebeschini -
2017 Poster: Accelerated consensus via Min-Sum Splitting »
Patrick Rebeschini · Sekhar C Tatikonda