Timezone: »
Operating in the real-world often requires agents to learn about a complex environment and apply this understanding to achieve a breadth of goals. This problem, known as goal-conditioned reinforcement learning (GCRL), becomes especially challenging for long-horizon goals. Current methods have tackled this problem by augmenting goal-conditioned policies with graph-based planning algorithms. However, they struggle to scale to large, high-dimensional state spaces and assume access to exploration mechanisms for efficiently collecting training data. In this work, we introduce Successor Feature Landmarks (SFL), a framework for exploring large, high-dimensional environments so as to obtain a policy that is proficient for any goal. SFL leverages the ability of successor features (SF) to capture transition dynamics, using it to drive exploration by estimating state-novelty and to enable high-level planning by abstracting the state-space as a non-parametric landmark-based graph. We further exploit SF to directly compute a goal-conditioned policy for inter-landmark traversal, which we use to execute plans to "frontier" landmarks at the edge of the explored state space. We show in our experiments on MiniGrid and ViZDoom that SFL enables efficient exploration of large, high-dimensional state spaces and outperforms state-of-the-art baselines on long-horizon GCRL tasks.
Author Information
Christopher Hoang (University of Michigan)
Sungryull Sohn (LG AI research US)
Jongwook Choi (University of Michigan)
Wilka Carvalho (University of Michigan)
I am a Masters student and NSF Graduate Research Fellow in the Computer Science Department at the University of Southern California. My primary research interest is the development of neuroscience- and cognitive science-informed artificial intelligence and machine learning models with brain-rivaling information-processing capabilities.
Honglak Lee (U. Michigan)
More from the Same Authors
-
2021 : Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks »
Yijie Guo · Qiucheng Wu · Honglak Lee -
2021 : Fast Inference and Transfer of Compositional Task for Few-shot Task Generalization »
Sungryull Sohn · Hyunjae Woo · Jongwook Choi · Izzeddin Gur · Aleksandra Faust · Honglak Lee -
2021 : Learning Parameterized Task Structure for Generalization to Unseen Entities »
Anthony Liu · Sungryull Sohn · Honglak Lee -
2021 : Task-driven Discovery of Perceptual Schemas for Generalization in Reinforcement Learning »
Wilka Carvalho · Andrew Lampinen · Kyriacos Nikiforou · Felix Hill · Murray Shanahan -
2021 : SURF: Semi-supervised Reward Learning with Data Augmentation for Feedback-efficient Preference-based Reinforcement Learning »
Jongjin Park · Younggyo Seo · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 : Learning compositional tasks from language instructions »
Lajanugen Logeswaran · Wilka Carvalho · Honglak Lee -
2021 Poster: Why Do Better Loss Functions Lead to Less Transferable Features? »
Simon Kornblith · Ting Chen · Honglak Lee · Mohammad Norouzi -
2021 Poster: Improving Transferability of Representations via Augmentation-Aware Self-Supervision »
Hankook Lee · Kibok Lee · Kimin Lee · Honglak Lee · Jinwoo Shin -
2021 Poster: Environment Generation for Zero-Shot Compositional Reinforcement Learning »
Izzeddin Gur · Natasha Jaques · Yingjie Miao · Jongwook Choi · Manoj Tiwari · Honglak Lee · Aleksandra Faust -
2020 : Panel »
· Wilka Carvalho · Judith Fan · Tejas Kulkarni · Christopher Xie -
2020 : Invited Talk: Wilka Carvalho »
Wilka Carvalho -
2020 Poster: Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards »
Yijie Guo · Jongwook Choi · Marcin Moczulski · Shengyu Feng · Samy Bengio · Mohammad Norouzi · Honglak Lee -
2020 Poster: Bridging Imagination and Reality for Model-Based Deep Reinforcement Learning »
Guangxiang Zhu · Minghao Zhang · Honglak Lee · Chongjie Zhang -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 Poster: High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks »
Ruben Villegas · Arkanath Pathak · Harini Kannan · Dumitru Erhan · Quoc V Le · Honglak Lee -
2018 Poster: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks »
Kimin Lee · Kibok Lee · Honglak Lee · Jinwoo Shin -
2018 Spotlight: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks »
Kimin Lee · Kibok Lee · Honglak Lee · Jinwoo Shin -
2018 Poster: Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies »
Sungryull Sohn · Junhyuk Oh · Honglak Lee -
2018 Poster: Learning Hierarchical Semantic Image Manipulation through Structured Representations »
Seunghoon Hong · Xinchen Yan · Thomas Huang · Honglak Lee -
2017 : Invited Talk 5 »
Honglak Lee -
2017 Workshop: Learning Disentangled Features: from Perception to Control »
Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau -
2017 Poster: Value Prediction Network »
Junhyuk Oh · Satinder Singh · Honglak Lee -
2016 Poster: Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision »
Xinchen Yan · Jimei Yang · Ersin Yumer · Yijie Guo · Honglak Lee -
2016 Poster: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2016 Oral: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2015 : Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning »
Honglak Lee -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2015 Poster: Deep Visual Analogy-Making »
Scott E Reed · Yi Zhang · Yuting Zhang · Honglak Lee -
2015 Poster: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Spotlight: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Oral: Deep Visual Analogy-Making »
Scott E Reed · Yi Zhang · Yuting Zhang · Honglak Lee -
2015 Poster: Learning Structured Output Representation using Deep Conditional Generative Models »
Kihyuk Sohn · Honglak Lee · Xinchen Yan -
2015 Poster: Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis »
Jimei Yang · Scott E Reed · Ming-Hsuan Yang · Honglak Lee -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning »
Xiaoxiao Guo · Satinder Singh · Honglak Lee · Richard L Lewis · Xiaoshi Wang -
2014 Poster: Improved Multimodal Deep Learning with Variation of Information »
Kihyuk Sohn · Wenling Shang · Honglak Lee -
2013 Poster: Robust Image Denoising with Multi-Column Deep Neural Networks »
Forest Agostinelli · Michael R Anderson · Honglak Lee -
2012 Poster: Learning to Align from Scratch »
Gary B Huang · Marwan A Mattar · Honglak Lee · Erik Learned-Miller -
2010 Workshop: Deep Learning and Unsupervised Feature Learning »
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng -
2009 Poster: Unsupervised feature learning for audio classification using convolutional deep belief networks »
Honglak Lee · Peter Pham · Yan Largman · Andrew Y Ng -
2007 Poster: Sparse deep belief net model for visual area V2 »
Honglak Lee · Ekanadham Chaitanya · Andrew Y Ng -
2006 Poster: Efficient sparse coding algorithms, end-stopping and nCRF surround suppression »
Honglak Lee · Alexis Battle · Raina Rajat · Andrew Y Ng