Timezone: »
This article proposes novel rules for false discovery rate control (FDRC) geared towards online anomaly detection in time series. Online FDRC rules allow to control the properties of a sequence of statistical tests. In the context of anomaly detection, the null hypothesis is that an observation is normal and the alternative is that it is anomalous. FDRC rules allow users to target a lower bound on precision in unsupervised settings. The methods proposed in this article overcome short-comings of previous FDRC rules in the context of anomaly detection, in particular ensuring that power remains high even when the alternative is exceedingly rare (typical in anomaly detection) and the test statistics are serially dependent (typical in time series). We show the soundness of these rules in both theory and experiments.
Author Information
Quentin Rebjock (Swiss Federal Institute of Technology Lausanne)
Baris Kurt (Amazon Research)
Tim Januschowski (Amazon Research)
- Director Pricing Platform, Zalando SE - Head of Time Series ML at AWS AI
Laurent Callot (Amazon)
More from the Same Authors
-
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2021 : On Symmetries in Variational Bayesian Neural Nets »
Richard Kurle · Tim Januschowski · Jan Gasthaus · Bernie Wang -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2022 Poster: On the detrimental effect of invariances in the likelihood for variational inference »
Richard Kurle · Ralf Herbrich · Tim Januschowski · Yuyang (Bernie) Wang · Jan Gasthaus -
2021 Poster: Neural Flows: Efficient Alternative to Neural ODEs »
Marin Biloš · Johanna Sommer · Syama Sundar Rangapuram · Tim Januschowski · Stephan Günnemann -
2021 Poster: Detecting Anomalous Event Sequences with Temporal Point Processes »
Oleksandr Shchur · Ali Caner Turkmen · Tim Januschowski · Jan Gasthaus · Stephan Günnemann -
2021 Poster: Probabilistic Forecasting: A Level-Set Approach »
Hilaf Hasson · Bernie Wang · Tim Januschowski · Jan Gasthaus -
2021 Poster: Deep Explicit Duration Switching Models for Time Series »
Abdul Fatir Ansari · Konstantinos Benidis · Richard Kurle · Ali Caner Turkmen · Harold Soh · Alexander Smola · Bernie Wang · Tim Januschowski -
2020 Poster: Normalizing Kalman Filters for Multivariate Time Series Analysis »
Emmanuel de Bézenac · Syama Sundar Rangapuram · Konstantinos Benidis · Michael Bohlke-Schneider · Richard Kurle · Lorenzo Stella · Hilaf Hasson · Patrick Gallinari · Tim Januschowski -
2019 Poster: High-dimensional multivariate forecasting with low-rank Gaussian Copula Processes »
David Salinas · Michael Bohlke-Schneider · Laurent Callot · Roberto Medico · Jan Gasthaus