Timezone: »
Poster
Faster Matchings via Learned Duals
Michael Dinitz · Sungjin Im · Thomas Lavastida · Benjamin Moseley · Sergei Vassilvitskii
A recent line of research investigates how algorithms can be augmented with machine-learned predictions to overcome worst case lower bounds. This area has revealed interesting algorithmic insights into problems, with particular success in the design of competitive online algorithms. However, the question of improving algorithm running times with predictions has largely been unexplored. We take a first step in this direction by combining the idea of machine-learned predictions with the idea of ``warm-starting" primal-dual algorithms. We consider one of the most important primitives in combinatorial optimization: weighted bipartite matching and its generalization to $b$-matching. We identify three key challenges when using learned dual variables in a primal-dual algorithm. First, predicted duals may be infeasible, so we give an algorithm that efficiently maps predicted infeasible duals to nearby feasible solutions. Second, once the duals are feasible, they may not be optimal, so we show that they can be used to quickly find an optimal solution. Finally, such predictions are useful only if they can be learned, so we show that the problem of learning duals for matching has low sample complexity. We validate our theoretical findings through experiments on both real and synthetic data. As a result we give a rigorous, practical, and empirically effective method to compute bipartite matchings.
Author Information
Michael Dinitz (Johns Hopkins University)
Sungjin Im (University of California, Merced)
Thomas Lavastida (Carnegie Mellon University)
Benjamin Moseley (Carnegie Mellon University)
Sergei Vassilvitskii (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Faster Matchings via Learned Duals »
Wed. Dec 8th 04:40 -- 04:55 PM Room
More from the Same Authors
-
2021 : Population Level Privacy Leakage in Binary Classification wtih Label Noise »
Róbert Busa-Fekete · Andres Munoz Medina · Umar Syed · Sergei Vassilvitskii -
2021 : On the Pitfalls of Label Differential Privacy »
Andres Munoz Medina · Róbert Busa-Fekete · Umar Syed · Sergei Vassilvitskii -
2023 Poster: Online List Labeling with Predictions »
Samuel McCauley · Benjamin Moseley · Aidin Niaparast · Shikha Singh -
2022 Poster: Algorithms with Prediction Portfolios »
Michael Dinitz · Sungjin Im · Thomas Lavastida · Benjamin Moseley · Sergei Vassilvitskii -
2022 Poster: Learning Predictions for Algorithms with Predictions »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii -
2021 : Population Level Privacy Leakage in Binary Classification wtih Label Noise »
Róbert Busa-Fekete · Andres Munoz Medina · Umar Syed · Sergei Vassilvitskii -
2021 : AI workloads inside databases »
Guy Van den Broeck · Alexander Ratner · Benjamin Moseley · Konstantinos Karanasos · Parisa Kordjamshidi · Molham Aref · Arun Kumar -
2021 Poster: Robust Online Correlation Clustering »
Silvio Lattanzi · Benjamin Moseley · Sergei Vassilvitskii · Yuyan Wang · Rudy Zhou -
2021 Poster: Online Knapsack with Frequency Predictions »
Sungjin Im · Ravi Kumar · Mahshid Montazer Qaem · Manish Purohit -
2021 : On the Pitfalls of Label Differential Privacy »
Andres Munoz Medina · Róbert Busa-Fekete · Umar Syed · Sergei Vassilvitskii -
2020 Poster: Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Benjamin Moseley · Philip Pham · Sergei Vassilvitskii · Yuyan Wang -
2019 Poster: Backprop with Approximate Activations for Memory-efficient Network Training »
Ayan Chakrabarti · Benjamin Moseley -
2019 Poster: Cost Effective Active Search »
Shali Jiang · Roman Garnett · Benjamin Moseley -
2018 Poster: Efficient nonmyopic batch active search »
Shali Jiang · Gustavo Malkomes · Matthew Abbott · Benjamin Moseley · Roman Garnett -
2018 Poster: Policy Regret in Repeated Games »
Raman Arora · Michael Dinitz · Teodor Vanislavov Marinov · Mehryar Mohri -
2018 Spotlight: Efficient nonmyopic batch active search »
Shali Jiang · Gustavo Malkomes · Matthew Abbott · Benjamin Moseley · Roman Garnett -
2017 Poster: Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search »
Benjamin Moseley · Joshua Wang -
2017 Oral: Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search »
Benjamin Moseley · Joshua Wang