Timezone: »
Marked temporal point processes (MTPPs) have emerged as a powerful modelingtool for a wide variety of applications which are characterized using discreteevents localized in continuous time. In this context, the events are of two typesendogenous events which occur due to the influence of the previous events andexogenous events which occur due to the effect of the externalities. However, inpractice, the events do not come with endogenous or exogenous labels. To thisend, our goal in this paper is to identify the set of exogenous events from a set ofunlabelled events. To do so, we first formulate the parameter estimation problemin conjunction with exogenous event set selection problem and show that thisproblem is NP hard. Next, we prove that the underlying objective is a monotoneand \alpha-submodular set function, with respect to the candidate set of exogenousevents. Such a characterization subsequently allows us to use a stochastic greedyalgorithm which was originally proposed in~\cite{greedy}for submodular maximization.However, we show that it also admits an approximation guarantee for maximizing\alpha-submodular set function, even when the learning algorithm provides an imperfectestimates of the trained parameters. Finally, our experiments with synthetic andreal data show that our method performs better than the existing approaches builtupon superposition of endogenous and exogenous MTPPs.
Author Information
Ping Zhang (University of Texas at Dallas)
Rishabh Iyer (University of Texas, Dallas)
Bio: Prof. Rishabh Iyer is currently an Assistant Professor at the University of Texas, Dallas, where he leads the CARAML Lab. He is also a Visiting Assistant Professor at the Indian Institute of Technology, Bombay. He completed his Ph.D. in 2015 from the University of Washington, Seattle. He is excited in making ML more efficient (both computational and labeling efficiency), robust, and fair. He has received the best paper award at Neural Information Processing Systems (NeurIPS/NIPS) in 2013, the International Conference of Machine Learning (ICML) in 2013, and an Honorable Mention at CODS-COMAD in 2021. He has also won a Microsoft Research Ph.D. Fellowship, a Facebook Ph.D. Fellowship, and the Yang Award for Outstanding Graduate Student from the University of Washington.
Ashish Tendulkar (Google)
Gaurav Aggarwal (Google)
Abir De (IIT Bombay)
More from the Same Authors
-
2021 : Targeted Active Learning using Submodular Mutual Information for Imbalanced Medical Image Classification »
Suraj Kothawade · Lakshman Tamil · Rishabh Iyer -
2022 : Using Informative Data Subsets for Efficient Training of Large Language Models: An Initial Study »
H S V N S Kowndinya Renduchintala · Krishnateja Killamsetty · Sumit Bhatia · Milan Aggarwal · Ganesh Ramakrishnan · Rishabh Iyer -
2022 : TALISMAN: Targeted Active Learning for Object Detection with Rare Classes and Slices using Submodular Mutual Information »
Suraj Kothawade · Saikat Ghosh · Sumit Shekhar · Yu Xiang · Rishabh Iyer -
2022 : A Contextual Bandit Approach for Learning to Plan in Environments with Probabilistic Goal Configurations »
Sohan Rudra · Saksham Goel · Anirban Santara · Claudio Gentile · Laurent Perron · Fei Xia · Vikas Sindhwani · Carolina Parada · Gaurav Aggarwal -
2022 : Test-time adaptation with slot-centric models »
Mihir Prabhudesai · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Anirudh Goyal · Deepak Pathak · Katerina Fragkiadaki · Gaurav Aggarwal · Thomas Kipf -
2022 : Test-time adaptation with slot-centric models »
Mihir Prabhudesai · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Anirudh Goyal · Deepak Pathak · Katerina Fragkiadaki · Gaurav Aggarwal · Thomas Kipf -
2022 : A Contextual Bandit Approach for Learning to Plan in Environments with Probabilistic Goal Configurations »
Sohan Rudra · Saksham Goel · Anirban Santara · Claudio Gentile · Laurent Perron · Fei Xia · Vikas Sindhwani · Carolina Parada · Gaurav Aggarwal -
2022 Spotlight: Neural Estimation of Submodular Functions with Applications to Differentiable Subset Selection »
Abir De · Soumen Chakrabarti -
2022 Spotlight: Maximum Common Subgraph Guided Graph Retrieval: Late and Early Interaction Networks »
Indradyumna Roy · Soumen Chakrabarti · Abir De -
2022 Spotlight: Learning Recourse on Instance Environment to Enhance Prediction Accuracy »
Lokesh N · Guntakanti Sai Koushik · Abir De · Sunita Sarawagi -
2022 Poster: Neural Estimation of Submodular Functions with Applications to Differentiable Subset Selection »
Abir De · Soumen Chakrabarti -
2022 Poster: ORIENT: Submodular Mutual Information Measures for Data Subset Selection under Distribution Shift »
Athresh Karanam · Krishnateja Killamsetty · Harsha Kokel · Rishabh Iyer -
2022 Poster: Learning Recourse on Instance Environment to Enhance Prediction Accuracy »
Lokesh N · Guntakanti Sai Koushik · Abir De · Sunita Sarawagi -
2022 Poster: Maximum Common Subgraph Guided Graph Retrieval: Late and Early Interaction Networks »
Indradyumna Roy · Soumen Chakrabarti · Abir De -
2022 Poster: AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient Hyper-parameter Tuning »
Krishnateja Killamsetty · Guttu Sai Abhishek · Aakriti Lnu · Ganesh Ramakrishnan · Alexandre Evfimievski · Lucian Popa · Rishabh Iyer -
2021 Poster: SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios »
Suraj Kothawade · Nathan Beck · Krishnateja Killamsetty · Rishabh Iyer -
2021 Poster: RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised Learning »
Krishnateja Killamsetty · Xujiang Zhao · Feng Chen · Rishabh Iyer -
2021 Poster: Differentiable Learning Under Triage »
Nastaran Okati · Abir De · Manuel Rodriguez -
2021 Poster: Training for the Future: A Simple Gradient Interpolation Loss to Generalize Along Time »
Anshul Nasery · Soumyadeep Thakur · Vihari Piratla · Abir De · Sunita Sarawagi -
2021 Poster: Counterfactual Explanations in Sequential Decision Making Under Uncertainty »
Stratis Tsirtsis · Abir De · Manuel Rodriguez -
2019 : Poster Session »
Ayse Cakmak · Yunkai Zhang · Srijith Prabhakarannair Kusumam · Mohamed Osama Ahmed · Xintao Wu · Jayesh Choudhari · David I Inouye · Thomas Taylor · Michel Besserve · Ali Caner Turkmen · Kazi Islam · Antonio Artés · Amrith Setlur · Zhanghua Fu · Zhen Han · Abir De · Nan Du · Pablo Sanchez-Martin -
2018 Poster: Deep Reinforcement Learning of Marked Temporal Point Processes »
Utkarsh Upadhyay · Abir De · Manuel Gomez Rodriguez -
2016 Poster: Learning and Forecasting Opinion Dynamics in Social Networks »
Abir De · Isabel Valera · Niloy Ganguly · Sourangshu Bhattacharya · Manuel Gomez Rodriguez -
2015 Poster: Submodular Hamming Metrics »
Jennifer Gillenwater · Rishabh K Iyer · Bethany Lusch · Rahul Kidambi · Jeffrey A Bilmes -
2015 Spotlight: Submodular Hamming Metrics »
Jennifer Gillenwater · Rishabh K Iyer · Bethany Lusch · Rahul Kidambi · Jeffrey A Bilmes -
2015 Poster: Mixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications »
Kai Wei · Rishabh K Iyer · Shengjie Wang · Wenruo Bai · Jeffrey A Bilmes -
2014 Poster: Learning Mixtures of Submodular Functions for Image Collection Summarization »
Sebastian Tschiatschek · Rishabh K Iyer · Haochen Wei · Jeffrey A Bilmes -
2013 Poster: Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints »
Rishabh K Iyer · Jeffrey A Bilmes -
2013 Oral: Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints »
Rishabh K Iyer · Jeffrey A Bilmes -
2013 Poster: Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions »
Rishabh K Iyer · Stefanie Jegelka · Jeffrey A Bilmes -
2012 Poster: Submodular Bregman Divergences with Applications »
Rishabh K Iyer · Jeffrey A Bilmes