Timezone: »
Poster
Efficient Truncated Linear Regression with Unknown Noise Variance
Constantinos Daskalakis · Patroklos Stefanou · Rui Yao · Emmanouil Zampetakis
Truncated linear regression is a classical challenge in Statistics, wherein a label, $y = w^T x + \varepsilon$, and its corresponding feature vector, $x \in \mathbb{R}^k$, are only observed if the label falls in some subset $S \subseteq \mathbb{R}$; otherwise the existence of the pair $(x, y)$ is hidden from observation. Linear regression with truncated observations has remained a challenge, in its general form, since the early works of [Tobin'58, Amemiya '73]. When the distribution of the error is normal with known variance, recent work of [Daskalakis et al. '19] provides computationally and statistically efficient estimators of the linear model, $w$. In this paper, we provide the first computationally and statistically efficient estimators for truncated linear regression when the noise variance is unknown, estimating both the linear model and the variance of the noise. Our estimator is based on an efficient implementation of Projected Stochastic Gradient Descent on the negative log-likelihood of the truncated sample. Importantly, we show that the error of our estimates is asymptotically normal, and we use this to provide explicit confidence regions for our estimates.
Author Information
Constantinos Daskalakis (MIT)
Patroklos Stefanou (Massachusetts Institute of Technology)
Rui Yao (Massachusetts Institute of Technology)
Emmanouil Zampetakis (University of California Berkeley)
More from the Same Authors
-
2021 Spotlight: Robust Learning of Optimal Auctions »
Wenshuo Guo · Michael Jordan · Emmanouil Zampetakis -
2021 : Last-Iterate Convergence of Saddle Point Optimizers via High-Resolution Differential Equations »
Tatjana Chavdarova · Michael Jordan · Emmanouil Zampetakis -
2021 : Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 : Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2021 : Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 : Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2021 : Spotlight 4: Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 Poster: Robust Learning of Optimal Auctions »
Wenshuo Guo · Michael Jordan · Emmanouil Zampetakis -
2021 Poster: Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2021 Oral: Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2020 Poster: Tight last-iterate convergence rates for no-regret learning in multi-player games »
Noah Golowich · Sarath Pattathil · Constantinos Daskalakis -
2020 Poster: Truncated Linear Regression in High Dimensions »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Poster: Constant-Expansion Suffices for Compressed Sensing with Generative Priors »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Spotlight: Constant-Expansion Suffices for Compressed Sensing with Generative Priors »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Poster: Independent Policy Gradient Methods for Competitive Reinforcement Learning »
Constantinos Daskalakis · Dylan Foster · Noah Golowich -
2018 : Improving Generative Adversarial Networks using Game Theory and Statistics »
Constantinos Daskalakis -
2018 Poster: Learning and Testing Causal Models with Interventions »
Jayadev Acharya · Arnab Bhattacharyya · Constantinos Daskalakis · Saravanan Kandasamy -
2018 Poster: Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons »
Nima Anari · Constantinos Daskalakis · Wolfgang Maass · Christos Papadimitriou · Amin Saberi · Santosh Vempala -
2018 Poster: HOGWILD!-Gibbs can be PanAccurate »
Constantinos Daskalakis · Nishanth Dikkala · Siddhartha Jayanti -
2018 Poster: The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization »
Constantinos Daskalakis · Ioannis Panageas -
2017 Poster: Concentration of Multilinear Functions of the Ising Model with Applications to Network Data »
Constantinos Daskalakis · Nishanth Dikkala · Gautam Kamath -
2015 Poster: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath -
2015 Spotlight: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath