Timezone: »
The recently-introduced class of ordinary differential equation networks (ODE-Nets) establishes a fruitful connection between deep learning and dynamical systems. In this work, we reconsider formulations of the weights as continuous-in-depth functions using linear combinations of basis functions which enables us to leverage parameter transformations such as function projections. In turn, this view allows us to formulate a novel stateful ODE-Block that handles stateful layers. The benefits of this new ODE-Block are twofold: first, it enables incorporating meaningful continuous-in-depth batch normalization layers to achieve state-of-the-art performance; second, it enables compressing the weights through a change of basis, without retraining, while maintaining near state-of-the-art performance and reducing both inference time and memory footprint. Performance is demonstrated by applying our stateful ODE-Block to (a) image classification tasks using convolutional units and (b) sentence-tagging tasks using transformer encoder units.
Author Information
Alejandro Queiruga (Google)
N. Benjamin Erichson (University of Pittsburgh)
Liam Hodgkinson (UC Berkeley)
Michael Mahoney (UC Berkeley)
More from the Same Authors
-
2021 Spotlight: Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update »
Michal Derezinski · Jonathan Lacotte · Mert Pilanci · Michael Mahoney -
2022 Poster: A Fast Post-Training Pruning Framework for Transformers »
Woosuk Kwon · Sehoon Kim · Michael Mahoney · Joseph Hassoun · Kurt Keutzer · Amir Gholami -
2022 Poster: Squeezeformer: An Efficient Transformer for Automatic Speech Recognition »
Sehoon Kim · Amir Gholami · Albert Shaw · Nicholas Lee · Karttikeya Mangalam · Jitendra Malik · Michael Mahoney · Kurt Keutzer -
2022 Poster: LSAR: Efficient Leverage Score Sampling Algorithm for the Analysis of Big Time Series Data »
Ali Eshragh · Fred Roosta · Asef Nazari · Michael Mahoney -
2021 : Q&A with Michael Mahoney »
Michael Mahoney -
2021 : Putting Randomized Matrix Algorithms in LAPACK, and Connections with Second-order Stochastic Optimization, Michael Mahoney »
Michael Mahoney -
2021 Poster: Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update »
Michal Derezinski · Jonathan Lacotte · Mert Pilanci · Michael Mahoney -
2021 Poster: Noisy Recurrent Neural Networks »
Soon Hoe Lim · N. Benjamin Erichson · Liam Hodgkinson · Michael Mahoney -
2021 Poster: Hessian Eigenspectra of More Realistic Nonlinear Models »
Zhenyu Liao · Michael Mahoney -
2021 Poster: Characterizing possible failure modes in physics-informed neural networks »
Aditi Krishnapriyan · Amir Gholami · Shandian Zhe · Robert Kirby · Michael Mahoney -
2021 Poster: Taxonomizing local versus global structure in neural network loss landscapes »
Yaoqing Yang · Liam Hodgkinson · Ryan Theisen · Joe Zou · Joseph Gonzalez · Kannan Ramchandran · Michael Mahoney -
2021 Oral: Hessian Eigenspectra of More Realistic Nonlinear Models »
Zhenyu Liao · Michael Mahoney -
2020 Poster: Boundary thickness and robustness in learning models »
Yaoqing Yang · Rajiv Khanna · Yaodong Yu · Amir Gholami · Kurt Keutzer · Joseph Gonzalez · Kannan Ramchandran · Michael Mahoney -
2020 Poster: Debiasing Distributed Second Order Optimization with Surrogate Sketching and Scaled Regularization »
Michal Derezinski · Burak Bartan · Mert Pilanci · Michael Mahoney -
2020 Poster: Exact expressions for double descent and implicit regularization via surrogate random design »
Michal Derezinski · Feynman Liang · Michael Mahoney -
2020 Poster: Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nystrom method »
Michal Derezinski · Rajiv Khanna · Michael Mahoney -
2020 Poster: Precise expressions for random projections: Low-rank approximation and randomized Newton »
Michal Derezinski · Feynman Liang · Zhenyu Liao · Michael Mahoney -
2020 Oral: Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nystrom method »
Michal Derezinski · Rajiv Khanna · Michael Mahoney -
2020 Poster: A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent »
Zhenyu Liao · Romain Couillet · Michael Mahoney -
2020 Poster: A Statistical Framework for Low-bitwidth Training of Deep Neural Networks »
Jianfei Chen · Yu Gai · Zhewei Yao · Michael Mahoney · Joseph Gonzalez -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 : Final remarks »
Anastasios Kyrillidis · Albert Berahas · Fred Roosta · Michael Mahoney -
2019 Workshop: Beyond first order methods in machine learning systems »
Anastasios Kyrillidis · Albert Berahas · Fred Roosta · Michael Mahoney -
2019 : Opening Remarks »
Anastasios Kyrillidis · Albert Berahas · Fred Roosta · Michael Mahoney -
2019 Poster: ANODEV2: A Coupled Neural ODE Framework »
Tianjun Zhang · Zhewei Yao · Amir Gholami · Joseph Gonzalez · Kurt Keutzer · Michael Mahoney · George Biros -
2019 Poster: Distributed estimation of the inverse Hessian by determinantal averaging »
Michal Derezinski · Michael Mahoney -
2018 Poster: GIANT: Globally Improved Approximate Newton Method for Distributed Optimization »
Shusen Wang · Fred Roosta · Peng Xu · Michael Mahoney -
2018 Poster: Hessian-based Analysis of Large Batch Training and Robustness to Adversaries »
Zhewei Yao · Amir Gholami · Qi Lei · Kurt Keutzer · Michael Mahoney -
2016 Poster: Feature-distributed sparse regression: a screen-and-clean approach »
Jiyan Yang · Michael Mahoney · Michael Saunders · Yuekai Sun -
2016 Poster: Sub-sampled Newton Methods with Non-uniform Sampling »
Peng Xu · Jiyan Yang · Farbod Roosta-Khorasani · Christopher Ré · Michael Mahoney -
2015 : Challenges in Multiresolution Methods for Graph-based Learning »
Michael Mahoney -
2015 : Using Local Spectral Methods in Theory and in Practice »
Michael Mahoney -
2015 Poster: Fast Randomized Kernel Ridge Regression with Statistical Guarantees »
Ahmed Alaoui · Michael Mahoney -
2013 Workshop: Large Scale Matrix Analysis and Inference »
Reza Zadeh · Gunnar Carlsson · Michael Mahoney · Manfred K. Warmuth · Wouter M Koolen · Nati Srebro · Satyen Kale · Malik Magdon-Ismail · Ashish Goel · Matei A Zaharia · David Woodruff · Ioannis Koutis · Benjamin Recht