Timezone: »
We consider the estimation of treatment effects in settings when multiple treatments are assigned over time and treatments can have a causal effect on future outcomes. We propose an extension of the double/debiased machine learning framework to estimate the dynamic effects of treatments and apply it to a concrete linear Markovian high-dimensional state space model and to general structural nested mean models. Our method allows the use of arbitrary machine learning methods to control for the high dimensional state, subject to a mean square error guarantee, while still allowing parametric estimation and construction of confidence intervals for the dynamic treatment effect parameters of interest. Our method is based on a sequential regression peeling process, which we show can be equivalently interpreted as a Neyman orthogonal moment estimator. This allows us to show root-n asymptotic normality of the estimated causal effects.
Author Information
Greg Lewis (Microsoft Research)
Vasilis Syrgkanis (Microsoft Research)
More from the Same Authors
-
2021 : Double/Debiased Machine Learning for Dynamic Treatment Effects via $g$-Estimation »
Greg Lewis · Vasilis Syrgkanis -
2021 : Estimating the Long-Term Effects of Novel Treatments »
Keith Battocchi · Maggie Hei · Greg Lewis · Miruna Oprescu · Vasilis Syrgkanis -
2021 Poster: Asymptotics of the Bootstrap via Stability with Applications to Inference with Model Selection »
Morgane Austern · Vasilis Syrgkanis -
2021 Poster: Estimating the Long-Term Effects of Novel Treatments »
Keith Battocchi · Eleanor Dillon · Maggie Hei · Greg Lewis · Miruna Oprescu · Vasilis Syrgkanis -
2020 Poster: Minimax Estimation of Conditional Moment Models »
Nishanth Dikkala · Greg Lewis · Lester Mackey · Vasilis Syrgkanis -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 Poster: Semi-Parametric Efficient Policy Learning with Continuous Actions »
Victor Chernozhukov · Mert Demirer · Greg Lewis · Vasilis Syrgkanis -
2019 Poster: Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing »
Jonas Mueller · Vasilis Syrgkanis · Matt Taddy -
2019 Poster: Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments »
Vasilis Syrgkanis · Victor Lei · Miruna Oprescu · Maggie Hei · Keith Battocchi · Greg Lewis -
2019 Spotlight: Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments »
Vasilis Syrgkanis · Victor Lei · Miruna Oprescu · Maggie Hei · Keith Battocchi · Greg Lewis -
2018 Workshop: Smooth Games Optimization and Machine Learning »
Simon Lacoste-Julien · Ioannis Mitliagkas · Gauthier Gidel · Vasilis Syrgkanis · Eva Tardos · Leon Bottou · Sebastian Nowozin -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Poster: Welfare Guarantees from Data »
Darrell Hoy · Denis Nekipelov · Vasilis Syrgkanis -
2017 Poster: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Poster: A Sample Complexity Measure with Applications to Learning Optimal Auctions »
Vasilis Syrgkanis -
2017 Oral: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2016 Poster: Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits »
Vasilis Syrgkanis · Haipeng Luo · Akshay Krishnamurthy · Robert Schapire -
2015 Poster: No-Regret Learning in Bayesian Games »
Jason Hartline · Vasilis Syrgkanis · Eva Tardos -
2015 Poster: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2015 Oral: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire