Timezone: »
Controllable text generation concerns two fundamental tasks of wide applications, namely generating text of given attributes (i.e., attribute-conditional generation), and minimally editing existing text to possess desired attributes (i.e., text attribute transfer). Extensive prior work has largely studied the two problems separately, and developed different conditional models which, however, are prone to producing biased text (e.g., various gender stereotypes). This paper proposes to formulate controllable text generation from a principled causal perspective which models the two tasks with a unified framework. A direct advantage of the causal formulation is the use of rich causality tools to mitigate generation biases and improve control. We treat the two tasks as interventional and counterfactual causal inference based on a structural causal model, respectively. We then apply the framework to the challenging practical setting where confounding factors (that induce spurious correlations) are observable only on a small fraction of data. Experiments show significant superiority of the causal approach over previous conditional models for improved control accuracy and reduced bias.
Author Information
Zhiting Hu (Carnegie Mellon University)
Li Erran Li (AWS AI, Amazon)
Li Erran Li is the head of machine learning at Scale and an adjunct professor at Columbia University. Previously, he was chief scientist at Pony.ai. Before that, he was with the perception team at Uber ATG and machine learning platform team at Uber where he worked on deep learning for autonomous driving, led the machine learning platform team technically, and drove strategy for company-wide artificial intelligence initiatives. He started his career at Bell Labs. Li’s current research interests are machine learning, computer vision, learning-based robotics, and their application to autonomous driving. He has a PhD from the computer science department at Cornell University. He’s an ACM Fellow and IEEE Fellow.
More from the Same Authors
-
2022 : The Impact of Symbolic Representations on In-context Learning for Few-shot Reasoning »
Hanlin Zhang · yifan zhang · Li Erran Li · Eric Xing -
2022 : Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation »
yifan zhang · Hanlin Zhang · Zachary Lipton · Li Erran Li · Eric Xing -
2021 : Learning to perceive objects by prediction »
Tushar Arora · Li Erran Li · Mingbo Cai -
2021 : Learning to perceive objects by prediction »
Tushar Arora · Li Erran Li · Mingbo Cai -
2019 : Welcome »
Rowan McAllister · Nicholas Rhinehart · Li Erran Li -
2019 Workshop: Machine Learning for Autonomous Driving »
Rowan McAllister · Nicholas Rhinehart · Fisher Yu · Li Erran Li · Anca Dragan -
2018 : Opening Remark »
Li Erran Li · Anca Dragan -
2018 Workshop: NIPS Workshop on Machine Learning for Intelligent Transportation Systems 2018 »
Li Erran Li · Anca Dragan · Juan Carlos Niebles · Silvio Savarese -
2018 Poster: Symbolic Graph Reasoning Meets Convolutions »
Xiaodan Liang · Zhiting Hu · Hao Zhang · Liang Lin · Eric Xing -
2018 Poster: Deep Generative Models with Learnable Knowledge Constraints »
Zhiting Hu · Zichao Yang · Russ Salakhutdinov · LIANHUI Qin · Xiaodan Liang · Haoye Dong · Eric Xing -
2018 Poster: Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation »
Yuan Li · Xiaodan Liang · Zhiting Hu · Eric Xing -
2018 Poster: Unsupervised Text Style Transfer using Language Models as Discriminators »
Zichao Yang · Zhiting Hu · Chris Dyer · Eric Xing · Taylor Berg-Kirkpatrick -
2017 Workshop: 2017 NIPS Workshop on Machine Learning for Intelligent Transportation Systems »
Li Erran Li · Anca Dragan · Juan Carlos Niebles · Silvio Savarese -
2017 Workshop: ML Systems Workshop @ NIPS 2017 »
Aparna Lakshmiratan · Sarah Bird · Siddhartha Sen · Christopher Ré · Li Erran Li · Joseph Gonzalez · Daniel Crankshaw -
2016 Workshop: Machine Learning Systems »
Aparna Lakshmiratan · Li Erran Li · Siddhartha Sen · Sarah Bird · Hussein Mehanna -
2016 Workshop: Machine Learning for Intelligent Transportation Systems »
Li Erran Li · Trevor Darrell