Timezone: »
In causal discovery, linear non-Gaussian acyclic models (LiNGAMs) have been studied extensively. While the causally sufficient case is well understood, in many real problems the observed variables are not causally related. Rather, they are generated by latent variables, such as confounders and mediators, which may themselves be causally related. Existing results on the identification of the causal structure among the latent variables often require very strong graphical assumptions. In this paper, we consider partially observed linear models with either non-Gaussian or heterogeneous errors. In that case we give two graphical conditions which are necessary for identification of the causal structure. These conditions are closely related to sparsity of the causal edges. Together with one additional condition on the coefficients, which holds generically for any graph, the two graphical conditions are also sufficient for identifiability. These new conditions can be satisfied even when there is a large number of latent variables. We demonstrate the validity of our results on synthetic data.
Author Information
Jeffrey Adams (University of Copenhagen)
Niels Hansen (University of Copenhagen)
Kun Zhang (CMU)
More from the Same Authors
-
2021 Poster: Domain Adaptation with Invariant Representation Learning: What Transformations to Learn? »
Petar Stojanov · Zijian Li · Mingming Gong · Ruichu Cai · Jaime Carbonell · Kun Zhang -
2021 Poster: Reliable Causal Discovery with Improved Exact Search and Weaker Assumptions »
Ignavier Ng · Yujia Zheng · Jiji Zhang · Kun Zhang -
2021 Poster: Instance-dependent Label-noise Learning under a Structural Causal Model »
Yu Yao · Tongliang Liu · Mingming Gong · Bo Han · Gang Niu · Kun Zhang -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: On the Role of Sparsity and DAG Constraints for Learning Linear DAGs »
Ignavier Ng · AmirEmad Ghassami · Kun Zhang -
2020 Session: Orals & Spotlights Track 27: Unsupervised/Probabilistic »
Marina Meila · Kun Zhang -
2020 Poster: A Causal View on Robustness of Neural Networks »
Cheng Zhang · Kun Zhang · Yingzhen Li -
2020 Poster: How do fair decisions fare in long-term qualification? »
Xueru Zhang · Ruibo Tu · Yang Liu · Mingyan Liu · Hedvig Kjellstrom · Kun Zhang · Cheng Zhang -
2020 Poster: Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs »
Feng Xie · Ruichu Cai · Biwei Huang · Clark Glymour · Zhifeng Hao · Kun Zhang -
2020 Spotlight: Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs »
Feng Xie · Ruichu Cai · Biwei Huang · Clark Glymour · Zhifeng Hao · Kun Zhang -
2020 Poster: Domain Adaptation as a Problem of Inference on Graphical Models »
Kun Zhang · Mingming Gong · Petar Stojanov · Biwei Huang · QINGSONG LIU · Clark Glymour -
2019 Poster: Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation »
Ruibo Tu · Kun Zhang · Bo Bertilson · Hedvig Kjellstrom · Cheng Zhang -
2019 Poster: Triad Constraints for Learning Causal Structure of Latent Variables »
Ruichu Cai · Feng Xie · Clark Glymour · Zhifeng Hao · Kun Zhang -
2019 Poster: Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering »
Biwei Huang · Kun Zhang · Pengtao Xie · Mingming Gong · Eric Xing · Clark Glymour -
2019 Poster: Twin Auxilary Classifiers GAN »
Mingming Gong · Yanwu Xu · Chunyuan Li · Kun Zhang · Kayhan Batmanghelich -
2019 Spotlight: Twin Auxilary Classifiers GAN »
Mingming Gong · Yanwu Xu · Chunyuan Li · Kun Zhang · Kayhan Batmanghelich -
2019 Poster: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2019 Spotlight: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2018 Poster: Multi-domain Causal Structure Learning in Linear Systems »
AmirEmad Ghassami · Negar Kiyavash · Biwei Huang · Kun Zhang -
2018 Poster: Causal Discovery from Discrete Data using Hidden Compact Representation »
Ruichu Cai · Jie Qiao · Kun Zhang · Zhenjie Zhang · Zhifeng Hao -
2018 Poster: Modeling Dynamic Missingness of Implicit Feedback for Recommendation »
Menghan Wang · Mingming Gong · Xiaolin Zheng · Kun Zhang -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang