Timezone: »
In this paper, we examine the convergence rate of a wide range of regularized methods for learning in games. To that end, we propose a unified algorithmic template that we call “follow the generalized leader” (FTGL), and which includes asspecial cases the canonical “follow the regularized leader” algorithm, its optimistic variants, extra-gradient schemes, and many others. The proposed framework is also sufficiently flexible to account for several different feedback models – fromfull information to bandit feedback. In this general setting, we show that FTGL algorithms converge locally to strict Nash equilibria at a rate which does not depend on the level of uncertainty faced by the players, but only on the geometry of the regularizer near the equilibrium. In particular, we show that algorithms based on entropic regularization – like the exponential weights algorithm – enjoy a linear convergence rate, while Euclidean projection methods converge to equilibrium in a finite number of iterations, even with bandit feedback.
Author Information
Angeliki Giannou (University of Wisconsin Madison)
Emmanouil-Vasileios Vlatakis-Gkaragkounis (Columbia University)
Panayotis Mertikopoulos (CNRS (French National Center for Scientific Research) and Criteo AI Lab)
More from the Same Authors
-
2022 Poster: No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation »
Yu-Guan Hsieh · Kimon Antonakopoulos · Volkan Cevher · Panayotis Mertikopoulos -
2022 Poster: First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces »
Michael Jordan · Tianyi Lin · Emmanouil-Vasileios Vlatakis-Gkaragkounis -
2022 Poster: On the convergence of policy gradient methods to Nash equilibria in general stochastic games »
Angeliki Giannou · Kyriakos Lotidis · Panayotis Mertikopoulos · Emmanouil-Vasileios Vlatakis-Gkaragkounis -
2021 Poster: Solving Min-Max Optimization with Hidden Structure via Gradient Descent Ascent »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2021 Poster: Fast Routing under Uncertainty: Adaptive Learning in Congestion Games via Exponential Weights »
Dong Quan Vu · Kimon Antonakopoulos · Panayotis Mertikopoulos -
2021 Poster: Sifting through the noise: Universal first-order methods for stochastic variational inequalities »
Kimon Antonakopoulos · Thomas Pethick · Ali Kavis · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Adaptive First-Order Methods Revisited: Convex Minimization without Lipschitz Requirements »
Kimon Antonakopoulos · Panayotis Mertikopoulos -
2020 Poster: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Spotlight: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Poster: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2020 Poster: Online Non-Convex Optimization with Imperfect Feedback »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud Rahier -
2020 Poster: On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems »
Panayotis Mertikopoulos · Nadav Hallak · Ali Kavis · Volkan Cevher -
2020 Spotlight: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2020 Poster: Optimal Private Median Estimation under Minimal Distributional Assumptions »
Christos Tzamos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Ilias Zadik -
2020 Spotlight: Optimal Private Median Estimation under Minimal Distributional Assumptions »
Christos Tzamos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Ilias Zadik -
2019 Poster: Efficiently avoiding saddle points with zero order methods: No gradients required »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2019 Poster: Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2019 Spotlight: Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2019 Poster: On the convergence of single-call stochastic extra-gradient methods »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2019 Poster: An adaptive Mirror-Prox method for variational inequalities with singular operators »
Kimon Antonakopoulos · Veronica Belmega · Panayotis Mertikopoulos -
2018 : Poster spotlight »
Tianbao Yang · Pavel Dvurechenskii · Panayotis Mertikopoulos · Hugo Berard -
2018 Poster: Bandit Learning in Concave N-Person Games »
Mario Bravo · David Leslie · Panayotis Mertikopoulos -
2018 Poster: Learning in Games with Lossy Feedback »
Zhengyuan Zhou · Panayotis Mertikopoulos · Susan Athey · Nicholas Bambos · Peter W Glynn · Yinyu Ye -
2017 Poster: Countering Feedback Delays in Multi-Agent Learning »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter W Glynn · Claire Tomlin -
2017 Poster: Learning with Bandit Feedback in Potential Games »
Amélie Héliou · Johanne Cohen · Panayotis Mertikopoulos -
2017 Poster: Stochastic Mirror Descent in Variationally Coherent Optimization Problems »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Stephen Boyd · Peter W Glynn