Timezone: »
Poster
Greedy Approximation Algorithms for Active Sequential Hypothesis Testing
Kyra Gan · Su Jia · Andrew Li
In the problem of \emph{active sequential hypothesis testing} (ASHT), a learner seeks to identify the \emph{true} hypothesis from among a known set of hypotheses. The learner is given a set of actions and knows the random distribution of the outcome of any action under any true hypothesis. Given a target error $\delta>0$, the goal is to sequentially select the fewest number of actions so as to identify the true hypothesis with probability at least $1 - \delta$. Motivated by applications in which the number of hypotheses or actions is massive (e.g., genomics-based cancer detection), we propose efficient (greedy, in fact) algorithms and provide the first approximation guarantees for ASHT, under two types of adaptivity. Both of our guarantees are independent of the number of actions and logarithmic in the number of hypotheses. We numerically evaluate the performance of our algorithms using both synthetic and real-world DNA mutation data, demonstrating that our algorithms outperform previously proposed heuristic policies by large margins.
Author Information
Kyra Gan (Carnegie Mellon University)
Su Jia (CMU)
Andrew Li (Carnegie Mellon University)
More from the Same Authors
-
2021 : Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2022 Spotlight: Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model »
Su Jia · Andrew Li · R Ravi -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Poster: Markovian Interference in Experiments »
Vivek Farias · Andrew Li · Tianyi Peng · Andrew Zheng -
2022 Poster: Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model »
Su Jia · Andrew Li · R Ravi -
2021 Oral: Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2021 Poster: Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 Poster: Optimal Decision Tree with Noisy Outcomes »
Su Jia · viswanath nagarajan · Fatemeh Navidi · R Ravi