Timezone: »

NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction
Peng Wang · Lingjie Liu · Yuan Liu · Christian Theobalt · Taku Komura · Wenping Wang


We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs. Existing neural surface reconstruction approaches, such as DVR [Niemeyer et al., 2020] and IDR [Yariv et al., 2020], require foreground mask as supervision, easily get trapped in local minima, and therefore struggle with the reconstruction of objects with severe self-occlusion or thin structures. Meanwhile, recent neural methods for novel view synthesis, such as NeRF [Mildenhall et al., 2020] and its variants, use volume rendering to produce a neural scene representation with robustness of optimization, even for highly complex objects. However, extracting high-quality surfaces from this learned implicit representation is difficult because there are not sufficient surface constraints in the representation. In NeuS, we propose to represent a surface as the zero-level set of a signed distance function (SDF) and develop a new volume rendering method to train a neural SDF representation. We observe that the conventional volume rendering method causes inherent geometric errors (i.e. bias) for surface reconstruction, and therefore propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision. Experiments on the DTU dataset and the BlendedMVS dataset show that NeuS outperforms the state-of-the-arts in high-quality surface reconstruction, especially for objects and scenes with complex structures and self-occlusion.

Author Information

Peng Wang (The University of Kong Kong)
Lingjie Liu (Max Planck Institute for Informatics)
Yuan Liu (Zhejiang University)
Christian Theobalt (MPI Informatik)
Taku Komura
Wenping Wang (HKU)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors