Timezone: »

 
Spotlight
Uniform Sampling over Episode Difficulty
Sébastien Arnold · Guneet Dhillon · Avinash Ravichandran · Stefano Soatto

@

Episodic training is a core ingredient of few-shot learning to train models on tasks with limited labelled data. Despite its success, episodic training remains largely understudied, prompting us to ask the question: what is the best way to sample episodes? In this paper, we first propose a method to approximate episode sampling distributions based on their difficulty. Building on this method, we perform an extensive analysis and find that sampling uniformly over episode difficulty outperforms other sampling schemes, including curriculum and easy-/hard-mining. As the proposed sampling method is algorithm agnostic, we can leverage these insights to improve few-shot learning accuracies across many episodic training algorithms. We demonstrate the efficacy of our method across popular few-shot learning datasets, algorithms, network architectures, and protocols.

Author Information

Sébastien Arnold (University of Southern California)
Guneet Dhillon (University of Oxford)
Avinash Ravichandran (AWS)
Stefano Soatto (UCLA)

Stefano Soatto received his Ph.D. in Control and Dynamical Systems from the California Institute of Technology in 1996; he joined UCLA in 2000 after being Assistant and then Associate Professor of Electrical Engineering and Biomedical Engineering at Washington University, and Research Associate in Applied Sciences at Harvard University. Between 1995 and 1998 he was also Ricercatore in the Department of Mathematics and Computer Science at the University of Udine - Italy. He received his D.Ing. degree (highest honors) from the University of Padova- Italy in 1992. His general research interests are in Computer Vision and Nonlinear Estimation and Control Theory. In particular, he is interested in ways for computers to use sensory information to interact with humans and the environment. Dr. Soatto is the recipient of the David Marr Prize for work on Euclidean reconstruction and reprojection up to subgroups. He also received the Siemens Prize with the Outstanding Paper Award from the IEEE Computer Society for his work on optimal structure from motion. He received the National Science Foundation Career Award and the Okawa Foundation Grant. He is a Member of the Editorial Board of the International Journal of Computer Vision (IJCV) and Foundations and Trends in Computer Graphics and Vision. He is the founder and director of the UCLA Vision Lab; more information is available at http://vision.ucla.edu

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors