Timezone: »
Data augmentation is a simple yet effective way to improve the robustness of deep neural networks (DNNs). Diversity and hardness are two complementary dimensions of data augmentation to achieve robustness. For example, AugMix explores random compositions of a diverse set of augmentations to enhance broader coverage, while adversarial training generates adversarially hard samples to spot the weakness. Motivated by this, we propose a data augmentation framework, termed AugMax, to unify the two aspects of diversity and hardness. AugMax first randomly samples multiple augmentation operators and then learns an adversarial mixture of the selected operators. Being a stronger form of data augmentation, AugMax leads to a significantly augmented input distribution which makes model training more challenging. To solve this problem, we further design a disentangled normalization module, termed DuBIN (Dual-Batch-and-Instance Normalization), that disentangles the instance-wise feature heterogeneity arising from AugMax. Experiments show that AugMax-DuBIN leads to significantly improved out-of-distribution robustness, outperforming prior arts by 3.03%, 3.49%, 1.82% and 0.71% on CIFAR10-C, CIFAR100-C, Tiny ImageNet-C and ImageNet-C. Codes and pretrained models are available: https://github.com/VITA-Group/AugMax.
Author Information
Haotao Wang (University of Texas at Austin)
Chaowei Xiao (University of Michigan, Ann Arbor)
I am Chaowei Xiao, a third year PhD student in CSE Department, University of Michigan, Ann Arbor. My advisor is Professor Mingyan Liu . I obtained my bachelor's degree in School of Software from Tsinghua University in 2015, advised by Professor Yunhao Liu, Professor Zheng Yang and Dr. Lei Yang. I was also a visiting student at UC Berkeley in 2018, advised by Professor Dawn Song and Professor Bo Li. My research interest includes adversarial machine learning.
Jean Kossaifi (NVIDIA Research)
Zhiding Yu (NVIDIA)
Anima Anandkumar (NVIDIA/Caltech)
Zhangyang Wang (UT Austin)
More from the Same Authors
-
2021 : Reinforcement Learning in Factored Action Spaces using Tensor Decompositions »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviichuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2022 : Retrieval-based Controllable Molecule Generation »
Jack Wang · Weili Nie · Zhuoran Qiao · Chaowei Xiao · Richard Baraniuk · Anima Anandkumar -
2022 : MoleculeCLIP: Learning Transferable Molecule Multi-Modality Models via Natural Language »
Shengchao Liu · Weili Nie · Chengpeng Wang · Jiarui Lu · Zhuoran Qiao · Ling Liu · Jian Tang · Anima Anandkumar · Chaowei Xiao -
2022 : Calibration of Large Neural Weather Models »
Andre Graubner · Kamyar Azizzadenesheli · Jaideep Pathak · Morteza Mardani · Mike Pritchard · Karthik Kashinath · Anima Anandkumar -
2022 : FourCastNet: A practical introduction to a state-of-the-art deep learning global weather emulator »
Jaideep Pathak · Shashank Subramanian · Peter Harrington · Thorsten Kurth · Andre Graubner · Morteza Mardani · David Hall · Karthik Kashinath · Anima Anandkumar -
2022 : Robust Trajectory Prediction against Adversarial Attacks »
Yulong Cao · Danfei Xu · Xinshuo Weng · Zhuoqing Morley Mao · Anima Anandkumar · Chaowei Xiao · Marco Pavone -
2022 : AdvDO: Realistic Adversarial Attacks for Trajectory Prediction »
Yulong Cao · Chaowei Xiao · Anima Anandkumar · Danfei Xu · Marco Pavone -
2022 : HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer Compression »
Jiaqi Gu · Ben Keller · Jean Kossaifi · Anima Anandkumar · Brucek Khailany · David Pan -
2022 : Calibration of Large Neural Weather Models »
Andre Graubner · Kamyar Azizzadenesheli · Jaideep Pathak · Morteza Mardani · Mike Pritchard · Karthik Kashinath · Anima Anandkumar -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 : HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer Compression »
Jiaqi Gu · Ben Keller · Jean Kossaifi · Anima Anandkumar · Brucek Khailany · David Pan -
2022 Poster: Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models »
Manli Shu · Weili Nie · De-An Huang · Zhiding Yu · Tom Goldstein · Anima Anandkumar · Chaowei Xiao -
2022 Poster: Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models »
Boxin Wang · Wei Ping · Chaowei Xiao · Peng Xu · Mostofa Patwary · Mohammad Shoeybi · Bo Li · Anima Anandkumar · Bryan Catanzaro -
2021 : Reinforcement Learning in Factored Action Spaces using Tensor Decompositions »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviichuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2021 Poster: Improving Contrastive Learning on Imbalanced Data via Open-World Sampling »
Ziyu Jiang · Tianlong Chen · Ting Chen · Zhangyang Wang -
2021 Poster: Sparse Training via Boosting Pruning Plasticity with Neuroregeneration »
Shiwei Liu · Tianlong Chen · Xiaohan Chen · Zahra Atashgahi · Lu Yin · Huanyu Kou · Li Shen · Mykola Pechenizkiy · Zhangyang Wang · Decebal Constantin Mocanu -
2021 Poster: Stronger NAS with Weaker Predictors »
Junru Wu · Xiyang Dai · Dongdong Chen · Yinpeng Chen · Mengchen Liu · Ye Yu · Zhangyang Wang · Zicheng Liu · Mei Chen · Lu Yuan -
2021 Poster: Controllable and Compositional Generation with Latent-Space Energy-Based Models »
Weili Nie · Arash Vahdat · Anima Anandkumar -
2021 Poster: IA-RED$^2$: Interpretability-Aware Redundancy Reduction for Vision Transformers »
Bowen Pan · Rameswar Panda · Yifan Jiang · Zhangyang Wang · Rogerio Feris · Aude Oliva -
2021 Poster: Hyperparameter Tuning is All You Need for LISTA »
Xiaohan Chen · Jialin Liu · Zhangyang Wang · Wotao Yin -
2021 Poster: Chasing Sparsity in Vision Transformers: An End-to-End Exploration »
Tianlong Chen · Yu Cheng · Zhe Gan · Lu Yuan · Lei Zhang · Zhangyang Wang -
2021 Poster: Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective »
Tianlong Chen · Yu Cheng · Zhe Gan · Jingjing Liu · Zhangyang Wang -
2021 Poster: TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up »
Yifan Jiang · Shiyu Chang · Zhangyang Wang -
2021 Poster: Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds »
Yujia Huang · Huan Zhang · Yuanyuan Shi · J. Zico Kolter · Anima Anandkumar -
2021 Poster: Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems »
Wenqing Zheng · Qiangqiang Guo · Hao Yang · Peihao Wang · Zhangyang Wang -
2021 Poster: The Elastic Lottery Ticket Hypothesis »
Xiaohan Chen · Yu Cheng · Shuohang Wang · Zhe Gan · Jingjing Liu · Zhangyang Wang -
2021 Poster: Coupled Segmentation and Edge Learning via Dynamic Graph Propagation »
Zhiding Yu · Rui Huang · Wonmin Byeon · Sifei Liu · Guilin Liu · Thomas Breuel · Anima Anandkumar · Jan Kautz -
2021 Poster: Sanity Checks for Lottery Tickets: Does Your Winning Ticket Really Win the Jackpot? »
Xiaolong Ma · Geng Yuan · Xuan Shen · Tianlong Chen · Xuxi Chen · Xiaohan Chen · Ning Liu · Minghai Qin · Sijia Liu · Zhangyang Wang · Yanzhi Wang -
2021 Poster: Long-Short Transformer: Efficient Transformers for Language and Vision »
Chen Zhu · Wei Ping · Chaowei Xiao · Mohammad Shoeybi · Tom Goldstein · Anima Anandkumar · Bryan Catanzaro -
2021 Poster: Adversarially Robust 3D Point Cloud Recognition Using Self-Supervisions »
Jiachen Sun · Yulong Cao · Christopher B Choy · Zhiding Yu · Anima Anandkumar · Zhuoqing Morley Mao · Chaowei Xiao -
2021 Poster: SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers »
Enze Xie · Wenhai Wang · Zhiding Yu · Anima Anandkumar · Jose M. Alvarez · Ping Luo -
2021 Poster: You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership »
Xuxi Chen · Tianlong Chen · Zhenyu Zhang · Zhangyang Wang -
2020 : Invited Talk 5: Live Presentation of TensorLy By Jean Kossaifi »
Animashree Anandkumar · Jean Kossaifi -
2020 Poster: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Spotlight: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Poster: Convolutional Tensor-Train LSTM for Spatio-Temporal Learning »
Jiahao Su · Wonmin Byeon · Jean Kossaifi · Furong Huang · Jan Kautz · Anima Anandkumar -
2019 Workshop: AI for Humanitarian Assistance and Disaster Response »
Ritwik Gupta · Robin Murphy · Trevor Darrell · Eric Heim · Zhangyang Wang · Bryce Goodman · Piotr BiliĆski -
2019 Poster: E2-Train: Training State-of-the-art CNNs with Over 80% Less Energy »
Ziyu Jiang · Yue Wang · Xiaohan Chen · Pengfei Xu · Yang Zhao · Yingyan Lin · Zhangyang Wang -
2019 Poster: Learning to Optimize in Swarms »
Yue Cao · Tianlong Chen · Zhangyang Wang · Yang Shen -
2019 Poster: Model Compression with Adversarial Robustness: A Unified Optimization Framework »
Shupeng Gui · Haotao Wang · Haichuan Yang · Chen Yu · Zhangyang Wang · Ji Liu -
2018 Poster: Can We Gain More from Orthogonality Regularizations in Training Deep Networks? »
Nitin Bansal · Xiaohan Chen · Zhangyang Wang -
2018 Poster: Theoretical Linear Convergence of Unfolded ISTA and Its Practical Weights and Thresholds »
Xiaohan Chen · Jialin Liu · Zhangyang Wang · Wotao Yin -
2018 Spotlight: Theoretical Linear Convergence of Unfolded ISTA and Its Practical Weights and Thresholds »
Xiaohan Chen · Jialin Liu · Zhangyang Wang · Wotao Yin -
2017 Poster: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song -
2017 Spotlight: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song