Timezone: »
A significant obstacle in the development of robust machine learning models is \emph{covariate shift}, a form of distribution shift that occurs when the input distributions of the training and test sets differ while the conditional label distributions remain the same. Despite the prevalence of covariate shift in real-world applications, a theoretical understanding in the context of modern machine learning has remained lacking. In this work, we examine the exact high-dimensional asymptotics of random feature regression under covariate shift and present a precise characterization of the limiting test error, bias, and variance in this setting. Our results motivate a natural partial order over covariate shifts that provides a sufficient condition for determining when the shift will harm (or even help) test performance. We find that overparameterized models exhibit enhanced robustness to covariate shift, providing one of the first theoretical explanations for this ubiquitous empirical phenomenon. Additionally, our analysis reveals an exact linear relationship between the in-distribution and out-of-distribution generalization performance, offering an explanation for this surprising recent observation.
Author Information
Nilesh Tripuraneni (UC Berkeley)
Ben Adlam (Google)
Jeffrey Pennington (Google Brain)
More from the Same Authors
-
2020 Poster: Finite Versus Infinite Neural Networks: an Empirical Study »
Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein -
2020 Spotlight: Finite Versus Infinite Neural Networks: an Empirical Study »
Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein -
2020 Poster: The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks »
Wei Hu · Lechao Xiao · Ben Adlam · Jeffrey Pennington -
2020 Spotlight: The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks »
Wei Hu · Lechao Xiao · Ben Adlam · Jeffrey Pennington -
2020 Poster: Understanding Double Descent Requires A Fine-Grained Bias-Variance Decomposition »
Ben Adlam · Jeffrey Pennington -
2020 Poster: On the Theory of Transfer Learning: The Importance of Task Diversity »
Nilesh Tripuraneni · Michael Jordan · Chi Jin -
2019 Poster: Learning GANs and Ensembles Using Discrepancy »
Ben Adlam · Corinna Cortes · Mehryar Mohri · Ningshan Zhang -
2019 Poster: Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent »
Jaehoon Lee · Lechao Xiao · Samuel Schoenholz · Yasaman Bahri · Roman Novak · Jascha Sohl-Dickstein · Jeffrey Pennington -
2018 Poster: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Oral: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Poster: The Spectrum of the Fisher Information Matrix of a Single-Hidden-Layer Neural Network »
Jeffrey Pennington · Pratik Worah -
2017 Spotlight: Nonlinear random matrix theory for deep learning »
Jeffrey Pennington · Pratik Worah -
2017 Poster: Nonlinear random matrix theory for deep learning »
Jeffrey Pennington · Pratik Worah -
2017 Poster: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice »
Jeffrey Pennington · Samuel Schoenholz · Surya Ganguli -
2015 Poster: Spherical Random Features for Polynomial Kernels »
Jeffrey Pennington · Felix Yu · Sanjiv Kumar -
2015 Spotlight: Spherical Random Features for Polynomial Kernels »
Jeffrey Pennington · Felix Yu · Sanjiv Kumar