Timezone: »
Probability discrepancy measure is a fundamental construct for numerous machine learning models such as weakly supervised learning and generative modeling. However, most measures overlook the fact that the distributions are not the end-product of learning, but are the basis of downstream predictor. Therefore it is important to warp the probability discrepancy measure towards the end tasks, and we hence propose a new bi-level optimization based approach so that the two distributions are compared not uniformly against the entire hypothesis space, but only with respect to the optimal predictor for the downstream end task. When applied to margin disparity discrepancy and contrastive domain discrepancy, our method significantly improves the performance in unsupervised domain adaptation, and enjoys a much more principled training process.
Author Information
Mao Li (University of Illinois at Chicago)
Kaiqi Jiang (University of Illinois at Chicago)
I am currently a Ph.D. student concentrating on machine learning working with Professor Xinhua Zhang. My current research is domain adaptation and fairness.
Xinhua Zhang (University of Illinois at Chicago (UIC))
More from the Same Authors
-
2022 : Poisoning Generative Models to Promote Catastrophic Forgetting »
Siteng Kang · Xinhua Zhang -
2022 : Continual Poisoning of Generative Models to Promote Catastrophic Forgetting »
Siteng Kang · Xinhua Zhang -
2022 Poster: Moment Distributionally Robust Tree Structured Prediction »
Yeshu Li · Danyal Saeed · Xinhua Zhang · Brian Ziebart · Kevin Gimpel -
2022 Poster: Certifying Robust Graph Classification under Orthogonal Gromov-Wasserstein Threats »
Hongwei Jin · Zishun Yu · Xinhua Zhang -
2021 Poster: Distributionally Robust Imitation Learning »
Mohammad Ali Bashiri · Brian Ziebart · Xinhua Zhang -
2020 Poster: Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks »
Hongwei Jin · Zhan Shi · Venkata Jaya Shankar Ashish Peruri · Xinhua Zhang -
2020 Spotlight: Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks »
Hongwei Jin · Zhan Shi · Venkata Jaya Shankar Ashish Peruri · Xinhua Zhang -
2020 Poster: Proximal Mapping for Deep Regularization »
Mao Li · Yingyi Ma · Xinhua Zhang -
2020 Spotlight: Proximal Mapping for Deep Regularization »
Mao Li · Yingyi Ma · Xinhua Zhang -
2019 : Coffee/Poster session 1 »
Shiro Takagi · Khurram Javed · Johanna Sommer · Amr Sharaf · Pierluca D'Oro · Ying Wei · Sivan Doveh · Colin White · Santiago Gonzalez · Cuong Nguyen · Mao Li · Tianhe Yu · Tiago Ramalho · Masahiro Nomura · Ahsan Alvi · Jean-Francois Ton · W. Ronny Huang · Jessica Lee · Sebastian Flennerhag · Michael Zhang · Abram Friesen · Paul Blomstedt · Alina Dubatovka · Sergey Bartunov · Subin Yi · Iaroslav Shcherbatyi · Christian Simon · Zeyuan Shang · David MacLeod · Lu Liu · Liam Fowl · Diego Mesquita · Deirdre Quillen -
2018 Poster: Distributionally Robust Graphical Models »
Rizal Fathony · Ashkan Rezaei · Mohammad Ali Bashiri · Xinhua Zhang · Brian Ziebart -
2017 Poster: Decomposition-Invariant Conditional Gradient for General Polytopes with Line Search »
Mohammad Ali Bashiri · Xinhua Zhang -
2017 Poster: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2017 Spotlight: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2016 Poster: Convex Two-Layer Modeling with Latent Structure »
Vignesh Ganapathiraman · Xinhua Zhang · Yaoliang Yu · Junfeng Wen -
2014 Poster: Convex Deep Learning via Normalized Kernels »
Özlem Aslan · Xinhua Zhang · Dale Schuurmans -
2014 Poster: Robust Bayesian Max-Margin Clustering »
Changyou Chen · Jun Zhu · Xinhua Zhang -
2013 Poster: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Spotlight: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Poster: Convex Two-Layer Modeling »
Özlem Aslan · Hao Cheng · Xinhua Zhang · Dale Schuurmans -
2013 Spotlight: Convex Two-Layer Modeling »
Özlem Aslan · Hao Cheng · Xinhua Zhang · Dale Schuurmans -
2013 Poster: Polar Operators for Structured Sparse Estimation »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2012 Poster: Convex Multi-view Subspace Learning »
Martha White · Yao-Liang Yu · Xinhua Zhang · Dale Schuurmans -
2012 Poster: Accelerated Training for Matrix-norm Regularization: A Boosting Approach »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2010 Poster: Lower Bounds on Rate of Convergence of Cutting Plane Methods »
Xinhua Zhang · Ankan Saha · S.V.N. Vishwanathan -
2008 Poster: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Spotlight: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2006 Poster: Hyperparameter Learning for Graph Based Semi-supervised Learning Algorithms »
Xinhua Zhang · Wee Sun Lee