Timezone: »
Pre-trained language models have been successful on text classification tasks, but are prone to learning spurious correlations from biased datasets, and are thus vulnerable when making inferences in a new domain. Prior work reveals such spurious patterns via post-hoc explanation algorithms which compute the importance of input features. Further, the model is regularized to align the importance scores with human knowledge, so that the unintended model behaviors are eliminated. However, such a regularization technique lacks flexibility and coverage, since only importance scores towards a pre-defined list of features are adjusted, while more complex human knowledge such as feature interaction and pattern generalization can hardly be incorporated. In this work, we propose to refine a learned language model for a target domain by collecting human-provided compositional explanations regarding observed biases. By parsing these explanations into executable logic rules, the human-specified refinement advice from a small set of explanations can be generalized to more training examples. We additionally introduce a regularization term allowing adjustments for both importance and interaction of features to better rectify model behavior. We demonstrate the effectiveness of the proposed approach on two text classification tasks by showing improved performance in target domain as well as improved model fairness after refinement.
Author Information
Huihan Yao (Peking University)
Ying Chen (Tsinghua University)
Qinyuan Ye (University of Southern California)
Xisen Jin (University of Southern California)
Xiang Ren (University of Southern California)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Refining Language Models with Compositional Explanations »
Tue. Dec 7th 04:30 -- 06:00 PM Room
More from the Same Authors
-
2020 : Poster #2 »
Xiang Ren -
2022 : PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales »
Peifeng Wang · Aaron Chan · Filip Ilievski · Muhao Chen · Xiang Ren -
2022 : Adaptive Pre-training of Language Models for Better Logical Reasoning »
Soumya Sanyal · Yichong Xu · Shuohang Wang · Ziyi Yang · Reid Pryzant · Wenhao Yu · Chenguang Zhu · Xiang Ren -
2022 : SPRINT: Scalable Semantic Policy Pre-training via Language Instruction Relabeling »
Jesse Zhang · Karl Pertsch · Jiahui Zhang · Taewook Nam · Sung Ju Hwang · Xiang Ren · Joseph Lim -
2022 : Information-Theoretic Evaluation of Free-Text Rationales with Conditional $\mathcal{V}$-Information »
Hanjie Chen · Faeze Brahman · Xiang Ren · Yangfeng Ji · Yejin Choi · Swabha Swayamdipta -
2022 : PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales »
Peifeng Wang · Aaron Chan · Filip Ilievski · Muhao Chen · Xiang Ren -
2022 : SPRINT: Scalable Semantic Policy Pre-training via Language Instruction Relabeling »
Jesse Zhang · Karl Pertsch · Jiahui Zhang · Taewook Nam · Sung Ju Hwang · Xiang Ren · Joseph Lim -
2022 Poster: NS3: Neuro-symbolic Semantic Code Search »
Shushan Arakelyan · Anna Hakhverdyan · Miltiadis Allamanis · Luis Garcia · Christophe Hauser · Xiang Ren -
2022 Poster: Unsupervised Cross-Task Generalization via Retrieval Augmentation »
Bill Yuchen Lin · Kangmin Tan · Chris Miller · Beiwen Tian · Xiang Ren -
2021 Poster: SalKG: Learning From Knowledge Graph Explanations for Commonsense Reasoning »
Aaron Chan · Jiashu Xu · Boyuan Long · Soumya Sanyal · Tanishq Gupta · Xiang Ren -
2021 Poster: Gradient-based Editing of Memory Examples for Online Task-free Continual Learning »
Xisen Jin · Arka Sadhu · Junyi Du · Xiang Ren -
2018 Poster: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Spotlight: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec