Timezone: »
Domain adaptation (DA) benefits from the rigorous theoretical works that study its insightful characteristics and various aspects, e.g., learning domain-invariant representations and its trade-off. However, it seems not the case for the multiple source DA and domain generalization (DG) settings which are remarkably more complicated and sophisticated due to the involvement of multiple source domains and potential unavailability of target domain during training. In this paper, we develop novel upper-bounds for the target general loss which appeal us to define two kinds of domain-invariant representations. We further study the pros and cons as well as the trade-offs of enforcing learning each domain-invariant representation. Finally, we conduct experiments to inspect the trade-off of these representations for offering practical hints regarding how to use them in practice and explore other interesting properties of our developed theory.
Author Information
Trung Phung (Vinai artificial intelligence application and research JSC)
Trung Le (Monash University)
Tung-Long Vuong (VNU - University of Engineering and Technology)
Toan Tran (Vinai artificial intelligence application and research JSC)
Anh Tran (VinAI Research)
Hung Bui (Google DeepMind)
Dinh Phung (Monash University)
More from the Same Authors
-
2022 Poster: MoVQ: Modulating Quantized Vectors for High-Fidelity Image Generation »
Chuanxia Zheng · Tung-Long Vuong · Jianfei Cai · Dinh Phung -
2022 : Transferability Between Regression Tasks »
Cuong Ngoc Nguyen · Phong Tran The · Lam Ho · Vu Dinh · Anh Tran · Tal Hassner · Cuong V. Nguyen -
2023 Poster: Model and Feature Diversity for Bayesian Neural Networks in Mutual Learning »
Cuong Pham · Cuong C Nguyen · Trung Le · Dinh Phung · Gustavo Carneiro · Thanh-Toan Do -
2023 Poster: Flat Seeking Bayesian Neural Networks »
Van-Anh Nguyen · Tung-Long Vuong · Hoang Phan · Thanh-Toan Do · Dinh Phung · Trung Le -
2023 Poster: IBA: Towards Irreversible Backdoor Attacks in Federated Learning »
Thuy Dung Nguyen · Tuan Nguyen · Anh Tran · Khoa D Doan · Kok-Seng Wong -
2023 Poster: Diffusion-based Synthetic Data Generation for Pixel-Level Semantic Segmentation »
Quang Nguyen · Truong Vu · Anh Tran · Khoi Nguyen -
2023 Poster: Optimal Transport Model Distributional Robustness »
Van-Anh Nguyen · Trung Le · Anh Bui · Thanh-Toan Do · Dinh Phung -
2023 Workshop: Backdoors in Deep Learning: The Good, the Bad, and the Ugly »
Khoa D Doan · Aniruddha Saha · Anh Tran · Yingjie Lao · Kok-Seng Wong · Ang Li · HARIPRIYA HARIKUMAR · Eugene Bagdasaryan · Micah Goldblum · Tom Goldstein -
2022 Spotlight: Lightning Talks 6B-4 »
Junjie Chen · Chuanxia Zheng · JINLONG LI · Yu Shi · Shichao Kan · Yu Wang · Fermín Travi · Ninh Pham · Lei Chai · Guobing Gan · Tung-Long Vuong · Gonzalo Ruarte · Tao Liu · Li Niu · Jingjing Zou · Zequn Jie · Peng Zhang · Ming LI · Yixiong Liang · Guolin Ke · Jianfei Cai · Gaston Bujia · Sunzhu Li · Siyuan Zhou · Jingyang Lin · Xu Wang · Min Li · Zhuoming Chen · Qing Ling · Xiaolin Wei · Xiuqing Lu · Shuxin Zheng · Dinh Phung · Yigang Cen · Jianlou Si · Juan Esteban Kamienkowski · Jianxin Wang · Chen Qian · Lin Ma · Benyou Wang · Yingwei Pan · Tie-Yan Liu · Liqing Zhang · Zhihai He · Ting Yao · Tao Mei -
2022 Spotlight: MoVQ: Modulating Quantized Vectors for High-Fidelity Image Generation »
Chuanxia Zheng · Tung-Long Vuong · Jianfei Cai · Dinh Phung -
2022 Poster: Learning Fractional White Noises in Neural Stochastic Differential Equations »
Anh Tong · Thanh Nguyen-Tang · Toan Tran · Jaesik Choi -
2022 Poster: Stochastic Multiple Target Sampling Gradient Descent »
Hoang Phan · Ngoc Tran · Trung Le · Toan Tran · Nhat Ho · Dinh Phung -
2022 Poster: QC-StyleGAN - Quality Controllable Image Generation and Manipulation »
Dat Viet Thanh Nguyen · Phong Tran The · Tan M. Dinh · Cuong Pham · Anh Tran -
2021 Poster: Structured Dropout Variational Inference for Bayesian Neural Networks »
Son Nguyen · Duong Nguyen · Khai Nguyen · Khoat Than · Hung Bui · Nhat Ho -
2021 Poster: Exploiting Domain-Specific Features to Enhance Domain Generalization »
Manh-Ha Bui · Toan Tran · Anh Tran · Dinh Phung -
2021 Poster: On Robust Optimal Transport: Computational Complexity and Barycenter Computation »
Khang Le · Huy Nguyen · Quang M Nguyen · Tung Pham · Hung Bui · Nhat Ho -
2021 Poster: Domain Invariant Representation Learning with Domain Density Transformations »
A. Tuan Nguyen · Toan Tran · Yarin Gal · Atilim Gunes Baydin -
2020 : QuatRE: Relation-Aware Quaternions for Knowledge Graph Embeddings »
Dai Quoc Nguyen · Dinh Phung -
2020 : Quaternion Graph Neural Networks »
Dai Quoc Nguyen · Tu Dinh Nguyen · Dinh Phung -
2020 Poster: OTLDA: A Geometry-aware Optimal Transport Approach for Topic Modeling »
Viet Huynh · He Zhao · Dinh Phung -
2020 Poster: Input-Aware Dynamic Backdoor Attack »
Tuan Anh Nguyen · Anh Tran -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2018 Poster: Amortized Inference Regularization »
Rui Shu · Hung Bui · Shengjia Zhao · Mykel J Kochenderfer · Stefano Ermon