Timezone: »
Inspired by human intelligence, the research on online continual learning aims to push the limits of the machine learning models to constantly learn from sequentially encountered tasks, with the data from each task being observed in an online fashion. Though recent studies have achieved remarkable progress in improving the online continual learning performance empowered by the deep neural networks-based models, many of today's approaches still suffer a lot from catastrophic forgetting, a persistent challenge for continual learning. In this paper, we present a novel method which attempts to mitigate catastrophic forgetting in online continual learning from a new perspective, i.e., neuron calibration. In particular, we model the neurons in the deep neural networks-based models as calibrated units under a general formulation. Then we formalize a learning framework to effectively train the calibrated model, where neuron calibration could give ubiquitous benefit to balance the stability and plasticity of online continual learning algorithms through influencing both their forward inference path and backward optimization path. Our proposed formulation for neuron calibration is lightweight and applicable to general feed-forward neural networks-based models. We perform extensive experiments to evaluate our method on four benchmark continual learning datasets. The results show that neuron calibration plays a vital role in improving online continual learning performance and our method could substantially improve the state-of-the-art performance on all~the~evaluated~datasets.
Author Information
Haiyan Yin (Sea AI Lab (SAIL), Singapore)
peng yang (Baidu)
Ping Li (Baidu Research USA)
More from the Same Authors
-
2020 : Session B, Poster 32: Reinforcement Learning With Efficient Active Feature Acquisition »
Haiyan Yin -
2022 : CASA: Bridging the Gap between Policy Improvement and Policy Evaluation with Conflict Averse Policy Iteration »
Changnan Xiao · Haosen Shi · Jiajun Fan · Shihong Deng · Haiyan Yin -
2021 Poster: A Comprehensively Tight Analysis of Gradient Descent for PCA »
Zhiqiang Xu · Ping Li -
2021 Poster: Backdoor Attack with Imperceptible Input and Latent Modification »
Khoa Doan · Yingjie Lao · Ping Li -
2021 Poster: A Note on Sparse Generalized Eigenvalue Problem »
Yunfeng Cai · Guanhua Fang · Ping Li -
2021 Poster: Rate-Optimal Subspace Estimation on Random Graphs »
Zhixin Zhou · Fan Zhou · Ping Li · Cun-Hui Zhang -
2021 Poster: Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction »
Jing Zhang · Jianwen Xie · Nick Barnes · Ping Li -
2020 : Poster Session B »
Ravichandra Addanki · Andreea-Ioana Deac · Yujia Xie · Francesco Landolfi · Antoine Prouvost · Claudius Gros · Renzo Massobrio · Abhishek Cauligi · Simon Alford · Hanjun Dai · Alberto Franzin · Nitish Kumar Panigrahy · Brandon Kates · Iddo Drori · Taoan Huang · Zhou Zhou · Marin Vlastelica · Anselm Paulus · Aaron Zweig · Minsu Cho · Haiyan Yin · Michal Lisicki · Nan Jiang · Haoran Sun -
2018 : Poster Session 1 + Coffee »
Tom Van de Wiele · Rui Zhao · J. Fernando Hernandez-Garcia · Fabio Pardo · Xian Yeow Lee · Xiaolin Andy Li · Marcin Andrychowicz · Jie Tang · Suraj Nair · Juhyeon Lee · Cédric Colas · S. M. Ali Eslami · Yen-Chen Wu · Stephen McAleer · Ryan Julian · Yang Xue · Matthia Sabatelli · Pranav Shyam · Alexandros Kalousis · Giovanni Montana · Emanuele Pesce · Felix Leibfried · Zhanpeng He · Chunxiao Liu · Yanjun Li · Yoshihide Sawada · Alexander Pashevich · Tejas Kulkarni · Keiran Paster · Luca Rigazio · Quan Vuong · Hyunggon Park · Minhae Kwon · Rivindu Weerasekera · Shamane Siriwardhanaa · Rui Wang · Ozsel Kilinc · Keith Ross · Yizhou Wang · Simon Schmitt · Thomas Anthony · Evan Cater · Forest Agostinelli · Tegg Sung · Shirou Maruyama · Alexander Shmakov · Devin Schwab · Mohammad Firouzi · Glen Berseth · Denis Osipychev · Jesse Farebrother · Jianlan Luo · William Agnew · Peter Vrancx · Jonathan Heek · Catalin Ionescu · Haiyan Yin · Megumi Miyashita · Nathan Jay · Noga H. Rotman · Sam Leroux · Shaileshh Bojja Venkatakrishnan · Henri Schmidt · Jack Terwilliger · Ishan Durugkar · Jonathan Sauder · David Kas · Arash Tavakoli · Alain-Sam Cohen · Philip Bontrager · Adam Lerer · Thomas Paine · Ahmed Khalifa · Ruben Rodriguez · Avi Singh · Yiming Zhang