Timezone: »

 
Poster
A Computationally Efficient Method for Learning Exponential Family Distributions
Abhin Shah · Devavrat Shah · Gregory Wornell

Thu Dec 09 04:30 PM -- 06:00 PM (PST) @
We consider the question of learning the natural parameters of a $k$ parameter \textit{minimal} exponential family from i.i.d. samples in a computationally and statistically efficient manner. We focus on the setting where the support as well as the natural parameters are appropriately bounded. While the traditional maximum likelihood estimator for this class of exponential family is consistent, asymptotically normal, and asymptotically efficient, evaluating it is computationally hard. In this work, we propose a computationally efficient estimator that is consistent as well as asymptotically normal under mild conditions. We provide finite sample guarantees to achieve an ($\ell_2$) error of $\alpha$ in the parameter estimation with sample complexity $O(\mathrm{poly}(k/\alpha))$ and computational complexity ${O}(\mathrm{poly}(k/\alpha))$. To establish these results, we show that, at the population level, our method can be viewed as the maximum likelihood estimation of a re-parameterized distribution belonging to the same class of exponential family.

Author Information

Abhin Shah (MIT)
Devavrat Shah (Massachusetts Institute of Technology)

Devavrat Shah is a professor of Electrical Engineering & Computer Science and Director of Statistics and Data Science at MIT. He received PhD in Computer Science from Stanford. He received Erlang Prize from Applied Probability Society of INFORMS in 2010 and NeuIPS best paper award in 2008.

Gregory Wornell (MIT)

More from the Same Authors