Timezone: »
Graph neural networks, a popular class of models effective in a wide range of graph-based learning tasks, have been shown to be vulnerable to adversarial attacks. While the majority of the literature focuses on such vulnerability in node-level classification tasks, little effort has been dedicated to analysing adversarial attacks on graph-level classification, an important problem with numerous real-life applications such as biochemistry and social network analysis. The few existing methods often require unrealistic setups, such as access to internal information of the victim models, or an impractically-large number of queries. We present a novel Bayesian optimisation-based attack method for graph classification models. Our method is black-box, query-efficient and parsimonious with respect to the perturbation applied. We empirically validate the effectiveness and flexibility of the proposed method on a wide range of graph classification tasks involving varying graph properties, constraints and modes of attack. Finally, we analyse common interpretable patterns behind the adversarial samples produced, which may shed further light on the adversarial robustness of graph classification models.
Author Information
Xingchen Wan (University of Oxford)
I am a PhD student in Machine Learning at the Machine Learning Research Group, University of Oxford. I am also currently a research intern at Google (Cloud AI Research).
Henry Kenlay (University of Oxford)
Robin Ru (Oxford University)
Arno Blaas (University of Oxford)
Michael A Osborne (U Oxford)
Xiaowen Dong (University of Oxford)
More from the Same Authors
-
2021 Spotlight: Speedy Performance Estimation for Neural Architecture Search »
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal -
2021 : Interaction data are identifiable even across long periods of time »
Ana-Maria Cretu · Federico Monti · Stefano Marrone · Xiaowen Dong · Michael Bronstein · Yves-Alexandre Montjoye -
2021 : DARTS without a Validation Set: Optimizing the Marginal Likelihood »
Miroslav Fil · Robin Ru · Clare Lyle · Yarin Gal -
2022 : On the Unreasonable Effectiveness of Feature Propagation in Learning on Graphs with Missing Node Features »
Emanuele Rossi · Henry Kenlay · Maria Gorinova · Benjamin Chamberlain · Xiaowen Dong · Michael Bronstein -
2022 : Towards Discovering Neural Architectures from Scratch »
Simon Schrodi · Danny Stoll · Robin Ru · Rhea Sukthanker · Thomas Brox · Frank Hutter -
2023 Poster: Bayesian Optimisation of Functions on Graphs »
Xingchen Wan · Pierre Osselin · Henry Kenlay · Binxin Ru · Michael A Osborne · Xiaowen Dong -
2023 Poster: Neural Latent Geometry Search: Product Manifold Inference via Gromov-Hausdorff-Informed Bayesian Optimization »
Haitz Sáez de Ocáriz Borde · Alvaro Arroyo · Ismael Morales · Ingmar Posner · Xiaowen Dong -
2022 : Understanding stock market instability via graph auto-encoders »
Dragos Gorduza · Xiaowen Dong · Stefan Zohren -
2022 Workshop: I Can’t Believe It’s Not Better: Understanding Deep Learning Through Empirical Falsification »
Arno Blaas · Sahra Ghalebikesabi · Javier Antorán · Fan Feng · Melanie F. Pradier · Ian Mason · David Rohde -
2022 Poster: Bezier Gaussian Processes for Tall and Wide Data »
Martin Jørgensen · Michael A Osborne -
2022 Poster: Log-Linear-Time Gaussian Processes Using Binary Tree Kernels »
Michael K. Cohen · Samuel Daulton · Michael A Osborne -
2022 Poster: Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization »
Samuel Daulton · Xingchen Wan · David Eriksson · Maximilian Balandat · Michael A Osborne · Eytan Bakshy -
2022 Poster: Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination »
Masaki Adachi · Satoshi Hayakawa · Martin Jørgensen · Harald Oberhauser · Michael A Osborne -
2021 Poster: Speedy Performance Estimation for Neural Architecture Search »
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal -
2021 Poster: How Powerful are Performance Predictors in Neural Architecture Search? »
Colin White · Arber Zela · Robin Ru · Yang Liu · Frank Hutter -
2021 Poster: Beltrami Flow and Neural Diffusion on Graphs »
Benjamin Chamberlain · James Rowbottom · Davide Eynard · Francesco Di Giovanni · Xiaowen Dong · Michael Bronstein -
2021 Poster: Learning to Learn Graph Topologies »
Xingyue Pu · Tianyue Cao · Xiaoyun Zhang · Xiaowen Dong · Siheng Chen -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2020 Poster: A Bayesian Perspective on Training Speed and Model Selection »
Clare Lyle · Lisa Schut · Robin Ru · Yarin Gal · Mark van der Wilk -
2020 Poster: Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective »
Vu Nguyen · Vaden Masrani · Rob Brekelmans · Michael A Osborne · Frank Wood -
2020 Poster: Bayesian Optimization for Iterative Learning »
Vu Nguyen · Sebastian Schulze · Michael A Osborne -
2020 Poster: Neural Architecture Generator Optimization »
Robin Ru · Pedro Esperança · Fabio Maria Carlucci -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2017 : Fast Information-theoretic Bayesian Optimisation »
Robin Ru -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2015 Workshop: Probabilistic Integration »
Michael A Osborne · Philipp Hennig -
2015 Symposium: Algorithms Among Us: the Societal Impacts of Machine Learning »
Michael A Osborne · Adrian Weller · Murray Shanahan -
2015 Poster: Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees »
François-Xavier Briol · Chris Oates · Mark Girolami · Michael A Osborne -
2015 Spotlight: Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees »
François-Xavier Briol · Chris Oates · Mark Girolami · Michael A Osborne -
2014 Poster: Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature »
Tom Gunter · Michael A Osborne · Roman Garnett · Philipp Hennig · Stephen J Roberts -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2012 Workshop: Probabilistic Numerics »
Philipp Hennig · John P Cunningham · Michael A Osborne -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2011 Workshop: Bayesian optimization, experimental design and bandits: Theory and applications »
Nando de Freitas · Roman Garnett · Frank R Hutter · Michael A Osborne