Timezone: »
Self-supervised disentangled representation learning is a critical task in sequence modeling. The learnt representations contribute to better model interpretability as well as the data generation, and improve the sample efficiency for downstream tasks. We propose a novel sequence representation learning method, named Contrastively Disentangled Sequential Variational Autoencoder (C-DSVAE), to extract and separate the static (time-invariant) and dynamic (time-variant) factors in the latent space. Different from previous sequential variational autoencoder methods, we use a novel evidence lower bound which maximizes the mutual information between the input and the latent factors, while penalizes the mutual information between the static and dynamic factors. We leverage contrastive estimations of the mutual information terms in training, together with simple yet effective augmentation techniques, to introduce additional inductive biases. Our experiments show that C-DSVAE significantly outperforms the previous state-of-the-art methods on multiple metrics.
Author Information
Junwen Bai (Cornell University)
Weiran Wang (Google)
Carla Gomes (Cornell University)
More from the Same Authors
-
2021 : Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification »
Junwen Bai · Shufeng Kong · Carla Gomes -
2021 : Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification »
Junwen Bai · Shufeng Kong · Carla Gomes -
2021 : Resolving Super Fine-Resolution SIF via Coarsely-Supervised U-Net Regression »
Joshua Fan · Di Chen · Jiaming Wen · Ying Sun · Carla Gomes -
2021 : A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction »
Joshua Fan · Junwen Bai · Zhiyun Li · Ariel Ortiz-Bobea · Carla Gomes -
2022 : Xtal2DoS: Attention-based Crystal to Sequence Learning for Density of States Prediction »
Junwen Bai · Yuanqi Du · Yingheng Wang · Shufeng Kong · John Gregoire · Carla Gomes -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Left Heavy Tails and the Effectiveness of the Policy and Value Networks in DNN-based best-first search for Sokoban Planning »
Dieqiao Feng · Carla Gomes · Bart Selman -
2021 : A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction »
Joshua Fan · Junwen Bai · Zhiyun Li · Ariel Ortiz-Bobea · Carla Gomes -
2021 : Resolving Super Fine-Resolution SIF via Coarsely-Supervised U-Net Regression »
Joshua Fan · Di Chen · Jiaming Wen · Ying Sun · Carla Gomes -
2021 Poster: Towards Deeper Deep Reinforcement Learning with Spectral Normalization »
Nils Bjorck · Carla Gomes · Kilian Weinberger -
2020 : Representation Learning for Sequence Data with Deep Autoencoding Predictive »
Junwen Bai -
2020 Poster: A Novel Automated Curriculum Strategy to Solve Hard Sokoban Planning Instances »
Dieqiao Feng · Carla Gomes · Bart Selman -
2019 : AI and Sustainable Development »
Fei Fang · Carla Gomes · Miguel Luengo-Oroz · Thomas Dietterich · Julien Cornebise -
2019 : Carla Gomes (Cornell) »
Carla Gomes -
2019 : Climate Change: A Grand Challenge for ML »
Yoshua Bengio · Carla Gomes · Andrew Ng · Jeff Dean · Lester Mackey -
2019 : Computational Sustainability: Computing for a Better World and a Sustainable Future »
Carla Gomes -
2018 Poster: Understanding Batch Normalization »
Johan Bjorck · Carla Gomes · Bart Selman · Kilian Weinberger -
2016 Poster: Solving Marginal MAP Problems with NP Oracles and Parity Constraints »
Yexiang Xue · zhiyuan li · Stefano Ermon · Carla Gomes · Bart Selman -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2013 Poster: Embed and Project: Discrete Sampling with Universal Hashing »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2012 Poster: Density Propagation and Improved Bounds on the Partition Function »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2011 Poster: Accelerated Adaptive Markov Chain for Partition Function Computation »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2011 Spotlight: Accelerated Adaptive Markov Chain for Partition Function Computation »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2006 Poster: Near-Uniform Sampling of Combinatorial Spaces Using XOR Constraints »
Carla Gomes · Ashish Sabharwal · Bart Selman