Timezone: »
Contrastive self-supervised learning has shown impressive results in learning visual representations from unlabeled images by enforcing invariance against different data augmentations. However, the learned representations are often contextually biased to the spurious scene correlations of different objects or object and background, which may harm their generalization on the downstream tasks. To tackle the issue, we develop a novel object-aware contrastive learning framework that first (a) localizes objects in a self-supervised manner and then (b) debias scene correlations via appropriate data augmentations considering the inferred object locations. For (a), we propose the contrastive class activation map (ContraCAM), which finds the most discriminative regions (e.g., objects) in the image compared to the other images using the contrastively trained models. We further improve the ContraCAM to detect multiple objects and entire shapes via an iterative refinement procedure. For (b), we introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning, respectively. Our experiments demonstrate the effectiveness of our representation learning framework, particularly when trained under multi-object images or evaluated under the background (and distribution) shifted images. Code is available at https://github.com/alinlab/object-aware-contrastive.
Author Information
Sangwoo Mo (KAIST)
Hyunwoo Kang (KAIST)
Kihyuk Sohn (Google)
Chun-Liang Li (Google)
Jinwoo Shin (KAIST)
More from the Same Authors
-
2021 : Improving Model Compatibility of Generative Adversarial Networks by Boundary Calibration »
Si-An Chen · Chun-Liang Li · Hsuan-Tien Lin -
2021 : SURF: Semi-supervised Reward Learning with Data Augmentation for Feedback-efficient Preference-based Reinforcement Learning »
Jongjin Park · Younggyo Seo · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 : Improving Model Compatibility of Generative Adversarial Networks by Boundary Calibration »
Si-An Chen · Chun-Liang Li · Hsuan-Tien Lin -
2022 : STUNT: Few-shot Tabular Learning with Self-generated Tasks from Unlabeled Tables »
Jaehyun Nam · Jihoon Tack · Kyungmin Lee · Hankook Lee · Jinwoo Shin -
2022 : Dynamics-Augmented Decision Transformer for Offline Dynamics Generalization »
Changyeon Kim · Junsu Kim · Younggyo Seo · Kimin Lee · Honglak Lee · Jinwoo Shin -
2022 : Unsupervised Meta-learning via Few-shot Pseudo-supervised Contrastive Learning »
Huiwon Jang · Hankook Lee · Jinwoo Shin -
2022 Poster: NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation »
Taesik Gong · Jongheon Jeong · Taewon Kim · Yewon Kim · Jinwoo Shin · Sung-Ju Lee -
2022 Poster: RényiCL: Contrastive Representation Learning with Skew Rényi Divergence »
Kyungmin Lee · Jinwoo Shin -
2022 Poster: Meta-Learning with Self-Improving Momentum Target »
Jihoon Tack · Jongjin Park · Hankook Lee · Jaeho Lee · Jinwoo Shin -
2022 Poster: Scalable Neural Video Representations with Learnable Positional Features »
Subin Kim · Sihyun Yu · Jaeho Lee · Jinwoo Shin -
2021 Poster: Robust Contrastive Learning Using Negative Samples with Diminished Semantics »
Songwei Ge · Shlok Mishra · Chun-Liang Li · Haohan Wang · David Jacobs -
2021 Poster: Improving Transferability of Representations via Augmentation-Aware Self-Supervision »
Hankook Lee · Kibok Lee · Kimin Lee · Honglak Lee · Jinwoo Shin -
2021 Poster: Controlling Neural Networks with Rule Representations »
Sungyong Seo · Sercan Arik · Jinsung Yoon · Xiang Zhang · Kihyuk Sohn · Tomas Pfister -
2021 Poster: A Unified View of cGANs with and without Classifiers »
Si-An Chen · Chun-Liang Li · Hsuan-Tien Lin -
2021 Poster: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning »
Junsu Kim · Younggyo Seo · Jinwoo Shin -
2021 Poster: RoMA: Robust Model Adaptation for Offline Model-based Optimization »
Sihyun Yu · Sungsoo Ahn · Le Song · Jinwoo Shin -
2021 Poster: Scaling Neural Tangent Kernels via Sketching and Random Features »
Amir Zandieh · Insu Han · Haim Avron · Neta Shoham · Chaewon Kim · Jinwoo Shin -
2021 Poster: Meta-Learning Sparse Implicit Neural Representations »
Jaeho Lee · Jihoon Tack · Namhoon Lee · Jinwoo Shin -
2021 Poster: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning »
Jongjin Park · Younggyo Seo · Chang Liu · Li Zhao · Tao Qin · Jinwoo Shin · Tie-Yan Liu -
2021 Poster: SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness »
Jongheon Jeong · Sejun Park · Minkyu Kim · Heung-Chang Lee · Do-Guk Kim · Jinwoo Shin -
2020 Poster: Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning »
Jaehyung Kim · Youngbum Hur · Sejun Park · Eunho Yang · Sung Ju Hwang · Jinwoo Shin -
2020 Poster: FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence »
Kihyuk Sohn · David Berthelot · Nicholas Carlini · Zizhao Zhang · Han Zhang · Colin A Raffel · Ekin Dogus Cubuk · Alexey Kurakin · Chun-Liang Li -
2020 Poster: Time-Reversal Symmetric ODE Network »
In Huh · Eunho Yang · Sung Ju Hwang · Jinwoo Shin -
2020 Poster: Learning from Failure: De-biasing Classifier from Biased Classifier »
Junhyun Nam · Hyuntak Cha · Sungsoo Ahn · Jaeho Lee · Jinwoo Shin -
2020 Poster: CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances »
Jihoon Tack · Sangwoo Mo · Jongheon Jeong · Jinwoo Shin -
2020 Poster: Guiding Deep Molecular Optimization with Genetic Exploration »
Sungsoo Ahn · Junsu Kim · Hankook Lee · Jinwoo Shin -
2020 Poster: Consistency Regularization for Certified Robustness of Smoothed Classifiers »
Jongheon Jeong · Jinwoo Shin -
2020 Poster: Trajectory-wise Multiple Choice Learning for Dynamics Generalization in Reinforcement Learning »
Younggyo Seo · Kimin Lee · Ignasi Clavera Gilaberte · Thanard Kurutach · Jinwoo Shin · Pieter Abbeel -
2020 Poster: Learning Bounds for Risk-sensitive Learning »
Jaeho Lee · Sejun Park · Jinwoo Shin -
2020 Poster: Few-shot Visual Reasoning with Meta-Analogical Contrastive Learning »
Youngsung Kim · Jinwoo Shin · Eunho Yang · Sung Ju Hwang -
2019 : Coffee Break & Poster Session 1 »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett · Po Leung · Patrick Flaherty · Pitchaya Wiratchotisatian · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam · Theja Tulabandhula · Fabian Fuchs · Adam Kosiorek · Ingmar Posner · William Hang · Anna Goldie · Sujith Ravi · Azalia Mirhoseini · Yuwen Xiong · Mengye Ren · Renjie Liao · Raquel Urtasun · Haici Zhang · Michele Borassi · Shengda Luo · Andrew Trapp · Geoffroy Dubourg-Felonneau · Yasmeen Kussad · Christopher Bender · Manzil Zaheer · Junier Oliva · Michał Stypułkowski · Maciej Zieba · Austin Dill · Chun-Liang Li · Songwei Ge · Eunsu Kang · Oiwi Parker Jones · Kelvin Ka Wing Wong · Joshua Payne · Yang Li · Azade Nazi · Erkut Erdem · Aykut Erdem · Kevin O'Connor · Juan J Garcia · Maciej Zamorski · Jan Chorowski · Deeksha Sinha · Harry Clifford · John W Cassidy -
2019 : Posters »
Colin Graber · Yuan-Ting Hu · Tiantian Fang · Jessica Hamrick · Giorgio Giannone · John Co-Reyes · Boyang Deng · Eric Crawford · Andrea Dittadi · Peter Karkus · Matthew Dirks · Rakshit Trivedi · Sunny Raj · Javier Felip Leon · Harris Chan · Jan Chorowski · Jeff Orchard · Aleksandar Stanić · Adam Kortylewski · Ben Zinberg · Chenghui Zhou · Wei Sun · Vikash Mansinghka · Chun-Liang Li · Marco Cusumano-Towner -
2019 Poster: Mining GOLD Samples for Conditional GANs »
Sangwoo Mo · Chiheon Kim · Sungwoong Kim · Minsu Cho · Jinwoo Shin -
2018 Poster: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks »
Kimin Lee · Kibok Lee · Honglak Lee · Jinwoo Shin -
2018 Poster: Stochastic Chebyshev Gradient Descent for Spectral Optimization »
Insu Han · Haim Avron · Jinwoo Shin -
2018 Poster: Nonparametric Density Estimation under Adversarial Losses »
Shashank Singh · Ananya Uppal · Boyue Li · Chun-Liang Li · Manzil Zaheer · Barnabas Poczos -
2018 Spotlight: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks »
Kimin Lee · Kibok Lee · Honglak Lee · Jinwoo Shin -
2018 Spotlight: Stochastic Chebyshev Gradient Descent for Spectral Optimization »
Insu Han · Haim Avron · Jinwoo Shin -
2018 Poster: Learning to Specialize with Knowledge Distillation for Visual Question Answering »
Jonghwan Mun · Kimin Lee · Jinwoo Shin · Bohyung Han -
2017 Poster: MMD GAN: Towards Deeper Understanding of Moment Matching Network »
Chun-Liang Li · Wei-Cheng Chang · Yu Cheng · Yiming Yang · Barnabas Poczos -
2017 Poster: Gauging Variational Inference »
Sungsoo Ahn · Michael Chertkov · Jinwoo Shin -
2016 Poster: Improved Deep Metric Learning with Multi-class N-pair Loss Objective »
Kihyuk Sohn -
2016 Poster: Synthesis of MCMC and Belief Propagation »
Sungsoo Ahn · Michael Chertkov · Jinwoo Shin -
2016 Oral: Synthesis of MCMC and Belief Propagation »
Sungsoo Ahn · Michael Chertkov · Jinwoo Shin -
2015 Poster: Learning Structured Output Representation using Deep Conditional Generative Models »
Kihyuk Sohn · Honglak Lee · Xinchen Yan -
2015 Poster: Minimum Weight Perfect Matching via Blossom Belief Propagation »
Sungsoo Ahn · Sejun Park · Michael Chertkov · Jinwoo Shin -
2015 Spotlight: Minimum Weight Perfect Matching via Blossom Belief Propagation »
Sungsoo Ahn · Sejun Park · Michael Chertkov · Jinwoo Shin -
2014 Poster: Improved Multimodal Deep Learning with Variation of Information »
Kihyuk Sohn · Wenling Shang · Honglak Lee -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A Graphical Transformation for Belief Propagation: Maximum Weight Matchings and Odd-Sized Cycles »
Jinwoo Shin · Andrew E Gelfand · Misha Chertkov