Timezone: »
Computational methods that operate on three-dimensional (3D) molecular structure have the potential to solve important problems in biology and chemistry. Deep neural networks have gained significant attention, but their widespread adoption in the biomolecular domain has been limited by a lack of either systematic performance benchmarks or a unified toolkit for interacting with 3D molecular data. To address this, we present ATOM3D, a collection of both novel and existing benchmark datasets spanning several key classes of biomolecules. We implement several types of 3D molecular learning methods for each of these tasks and show that they consistently improve performance relative to methods based on one- and two-dimensional representations. The choice of architecture proves to be important for performance, with 3D convolutional networks excelling at tasks involving complex geometries, graph networks performing well on systems requiring detailed positional information, and the more recently developed equivariant networks showing significant promise. Our results indicate that many molecular problems stand to gain from 3D molecular learning, and that there is potential for substantial further improvement on many tasks. To lower the barrier to entry and facilitate further developments in the field, we also provide a comprehensive suite of tools for dataset processing, model training, and evaluation in our open-source atom3d Python package. All datasets are available for download from www.atom3d.ai.
Author Information
Raphael Townshend (Stanford University)
Martin Vögele (Stanford University)
Patricia Suriana (Stanford University)
Alex Derry (Stanford University)
Alexander Powers
Yianni Laloudakis
Sidhika Balachandar (Stanford University)
Bowen Jing (Stanford University)
Brandon Anderson
Stephan Eismann (Stanford University)
Risi Kondor (Flatiron Institute)
Risi Kondor joined the Flatiron Institute in 2019 as a Senior Research Scientist with the Center for Computational Mathematics. Previously, Kondor was an Associate Professor in the Department of Computer Science, Statistics, and the Computational and Applied Mathematics Initiative at the University of Chicago. His research interests include computational harmonic analysis and machine learning. Kondor holds a Ph.D. in Computer Science from Columbia University, an MS in Knowledge Discovery and Data Mining from Carnegie Mellon University, and a BA in Mathematics from the University of Cambridge. He also holds a diploma in Computational Fluid Dynamics from the Von Karman Institute for Fluid Dynamics and a diploma in Physics from Eötvös Loránd University in Budapest.
Russ Altman
Ron Dror (Stanford University)
More from the Same Authors
-
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Multiresolution Mesh Networks For Learning Dynamical Fluid Simulations »
Bach Nguyen · Truong Son Hy · Long Tran-Thanh · Risi Kondor -
2022 : Predicting Drug-Drug Interactions using Deep Generative Models on Graphs »
Khang Ngo · Truong Son Hy · Risi Kondor -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Molecular Docking with Diffusion Generative Models »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 Panel: Panel 2A-1: Molecule Generation by… & Torsional Diffusion for… »
Bowen Jing · Xiangzhe Kong -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Torsional Diffusion for Molecular Conformer Generation »
Bowen Jing · Gabriele Corso · Jeffrey Chang · Regina Barzilay · Tommi Jaakkola -
2021 Workshop: Machine Learning in Structural Biology »
Ellen Zhong · Raphael Townshend · Stephan Eismann · Namrata Anand · Roshan Rao · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Bonnie Berger -
2021 Poster: Autobahn: Automorphism-based Graph Neural Nets »
Erik Thiede · Wenda Zhou · Risi Kondor -
2021 : ATOM3D: Tasks on Molecules in Three Dimensions »
Raphael Townshend · Martin Vögele · Patricia Suriana · Alex Derry · Alexander Powers · Yianni Laloudakis · Sidhika Balachandar · Bowen Jing · Brandon Anderson · Stephan Eismann · Risi Kondor · Russ Altman · Ron Dror -
2020 : Protein model quality assessment using rotation-equivariant, hierarchical neural networks »
Stephan Eismann · Patricia Suriana · Bowen Jing · Raphael Townshend · Ron Dror -
2020 : Happy Hour »
Raphael Townshend -
2020 : Concluding Remarks »
Raphael Townshend -
2020 : Mohammed AlQuraishi intro »
Raphael Townshend -
2020 : Contributed Talk - Learning from Protein Structure with Geometric Vector Perceptrons »
Bowen Jing · Stephan Eismann · Patricia Suriana · Raphael Townshend · Ron Dror -
2020 : Lunch + Panel Discussion on Future of ML for Structural Biology (Starts at 1pm) »
Raphael Townshend -
2020 : Spotlight Talk: Protein model quality assessment using rotation-equivariant, hierarchical neural networks - Stephan Eismann, Patricia Suriana, Bowen Jing, Raphael Townshend and Ron Dror. »
Stephan Eismann -
2020 : Charlotte Deane Intro »
Stephan Eismann -
2020 : Michael Levitt intro »
Raphael Townshend -
2020 Workshop: Machine Learning for Structural Biology »
Raphael Townshend · Stephan Eismann · Ron Dror · Ellen Zhong · Namrata Anand · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Roshan Rao · Per Greisen · Rachel Kolodny · Bonnie Berger -
2020 : Opening Remarks »
Raphael Townshend -
2020 Tutorial: (Track2) Equivariant Networks Q&A »
Risi Kondor · Taco Cohen -
2020 Tutorial: (Track2) Equivariant Networks »
Risi Kondor · Taco Cohen -
2019 : Solutions »
Fitzroy Christian · Lily Hu · Risi Kondor · Brandeis Marshall · Fabian Rogers · Friederike Schuur · Emanuel Moss -
2019 Workshop: Minding the Gap: Between Fairness and Ethics »
Igor Rubinov · Risi Kondor · Jack Poulson · Manfred K. Warmuth · Emanuel Moss · Alexa Hagerty -
2019 Poster: End-to-End Learning on 3D Protein Structure for Interface Prediction »
Raphael Townshend · Rishi Bedi · Patricia Suriana · Ron Dror -
2019 Poster: Cormorant: Covariant Molecular Neural Networks »
Brandon Anderson · Truong Son Hy · Risi Kondor -
2019 Spotlight: Cormorant: Covariant Molecular Neural Networks »
Brandon Anderson · Truong Son Hy · Risi Kondor -
2018 Poster: Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network »
Risi Kondor · Zhen Lin · Shubhendu Trivedi -
2017 : Poster session 1 »
Van-Doan Nguyen · Stephan Eismann · Haozhen Wu · Garrett Goh · Kristina Preuer · Thomas Unterthiner · Matthew Ragoza · Tien-Lam PHAM · Günter Klambauer · Andrea Rocchetto · Maxwell Hutchinson · Qian Yang · Rafael Gomez-Bombarelli · Sheshera Mysore · Brooke Husic · Ryan-Rhys Griffiths · Masashi Tsubaki · Emma Strubell · Philippe Schwaller · Théophile Gaudin · Michael Brenner · Li Li