Timezone: »
The program includes a wide variety of exciting competitions in different domains, with some focusing more on applications and others trying to unify fields, focusing on technical challenges or directly tackling important problems in the world. The aim is for the broad program to make it so that anyone who wants to work on or learn from a competition can find something to their liking.
In this session, we have the following competitions:
* Evaluating Approximate Inference in Bayesian Deep Learning
* The NetHack Challenge
* Machine Learning for Combinatorial Optimization
* Traffic4cast 2021 - Temporal and Spatial Few-Shot Transfer Learning in Traffic Map Movie Forecasting
* BASALT: A MineRL Competition on Solving Human-Judged Tasks
* IGLU: Interactive Grounded Language Understanding in a Collaborative Environment
Thu 10:00 a.m. - 10:05 a.m.
|
Introduction to Competition Day 3
(
Intro
)
SlidesLive Video » |
Marco Ciccone 🔗 |
Thu 10:05 a.m. - 10:25 a.m.
|
Evaluating Approximate Inference in Bayesian Deep Learning + Q&A
(
Talk
)
link »
SlidesLive Video » Understanding the fidelity of approximate inference has extraordinary value beyond the standard approach of measuring generalization on a particular task: if approximate inference is working correctly, then we can expect more reliable and accurate deployment across any number of real-world settings. In this regular competition, we invite the community to evaluate the fidelity of approximate Bayesian inference procedures in deep learning, using as a reference Hamiltonian Monte Carlo (HMC) samples obtained by parallelizing computations over hundreds of tensor processing unit (TPU) devices. We consider a variety of tasks, including image recognition, regression, covariate shift, and medical applications, such as diagnosing diabetic retinopathy. All data are publicly available, and we will release several baselines, including stochastic MCMC, variational methods, and deep ensembles. |
Andrew Gordon Wilson · Pavel Izmailov · Matthew Hoffman · Yarin Gal · Yingzhen Li · Melanie F. Pradier · Sharad Vikram · Andrew Foong · Sanae Lotfi · Sebastian Farquhar 🔗 |
Thu 10:24 a.m. - 1:24 p.m.
|
Breakout: Evaluating Approximate Inference in Bayesian Deep Learning
(
Breakout session
)
|
🔗 |
Thu 10:25 a.m. - 10:45 a.m.
|
The NetHack Challenge + Q&A
(
Talk
)
link »
SlidesLive Video » The NetHack Challenge is based on the NetHack Learning Environment (NLE), where teams will compete to build the best agents to play the game of NetHack. NetHack is a ASCII-rendered single-player dungeon crawl game that is one of the oldest and most difficult computer games in history. NetHack is procedurally-generated, with hundreds of different entities and complex environment dynamics, presenting an extremely challenging environment for both current state-of-the-art RL agents and humans, while crucially being lightning-fast to simulate. We are excited that this competition offers machine learning students, researchers and NetHack-bot builders the opportunity to participate in a grand challenge in AI without prohibitive computational costs—and we are eagerly looking forward to the wide variety of submissions. |
Eric Hambro · Sharada Mohanty · Dipam Chakrabroty · Edward Grefenstette · Minqi Jiang · Robert Kirk · Vitaly Kurin · Heinrich Kuttler · Vegard Mella · Nantas Nardelli · Jack Parker-Holder · Roberta Raileanu · Tim Rocktäschel · Danielle Rothermel · Mikayel Samvelyan
|
Thu 10:44 a.m. - 1:44 p.m.
|
Breakout: The NetHack Challenge
(
Breakout session
)
|
🔗 |
Thu 10:45 a.m. - 11:05 a.m.
|
Machine Learning for Combinatorial Optimization + Q&A
(
Talk
)
link »
SlidesLive Video » The Machine Learning for Combinatorial Optimization (ML4CO) competition aims at improving a state-of-the-art mathematical solver by replacing key heuristic components with machine learning models trained on historical data. To that end participants will compete on the three following challenges, each corresponding to a distinct control task arising in a branch-and-bound solver: producing good solutions (primal task), proving optimality via branching (dual task), and choosing the best solver parameters (configuration task). Each task is exposed through an OpenAI-gym Python API build on top of the open-source solver SCIP, using the Ecole library. Participants can compete in any subset of the proposed challenges. While we encourage solutions derived from the reinforcement learning paradigm, any algorithmic solution respecting the competition's API is accepted. |
Maxime Gasse · Simon Bowly · Chris Cameron · Quentin Cappart · Jonas Charfreitag · Laurent Charlin · Shipra Agrawal · Didier Chetelat · Justin Dumouchelle · Ambros Gleixner · Aleksandr Kazachkov · Elias Khalil · Pawel Lichocki · Andrea Lodi · Miles Lubin · Christopher Morris · Dimitri Papageorgiou · Augustin Parjadis · Sebastian Pokutta · Antoine Prouvost · Yuandong Tian · Lara Scavuzzo · Giulia Zarpellon
|
Thu 11:04 a.m. - 2:04 p.m.
|
Breakout: Machine Learning for Combinatorial Optimization
(
Breakout session
)
Schedule (GMT Timezone)
|
🔗 |
Thu 11:05 a.m. - 11:25 a.m.
|
Traffic4cast 2021 – Temporal and Spatial Few-Shot Transfer Learning in Traffic Map Movie Forecasting + Q&A
(
Talk
)
link »
SlidesLive Video »
Traffic is said to follow `hidden rules' that can be transferred across domain shifts. Our competition sets out to explore this meta topic with two few-shot learning tasks: predictions across a temporal shift brought about by COVID-19 and across a spatio-temporal shift in hitherto unseen cities.
We provide an unprecedented, large data set from $10^{12}$ real world GPS probes in $10$ cities binned in space and time into multi-channel movie frames, as well as static data on the basic road connections of the underlying road network. Thus participants can approach these transfer tasks using graph based approaches encoding knowledge about the road network or approaches from computer vision like U-nets, which were highly successful in our previous competitions. Any advance in these questions will have a large impact on smart city planning, on mobility in general and thus, ultimately, our way of living more sustainably.
|
Moritz Neun · Christian Eichenberger · Henry Martin · Pedro Herruzo · David Jonietz · Fei Tang · Daniel Springer · Markus Spanring · Avi Avidan · Luis Ferro · Ali Soleymani · Rohit Gupta · Bo Xu · Kevin Malm · Aleksandra Gruca · Johannes Brandstetter · Michael Kopp · David Kreil · Sepp Hochreiter
|
Thu 11:24 a.m. - 2:24 p.m.
|
Breakout: Traffic4cast 2021 – Temporal and Spatial Few-Shot Transfer Learning in Traffic Map Movie Forecasting
(
Breakout session
)
|
🔗 |
Thu 11:25 a.m. - 11:45 a.m.
|
BASALT: A MineRL Competition on Solving Human-Judged Task + Q&A
(
Talk
)
link »
SlidesLive Video » The Benchmark for Agents that Solve Almost-Lifelike Tasks (BASALT) competition aims to promote research in the area of learning from human feedback in order to enable agents that can pursue tasks that do not have crisp, easily defined reward functions. We provide tasks consisting of a simple English language description alongside a Gym environment, without any associated reward function, but with expert demos. Participants will train agents for these tasks using their preferred methods. We expect typical solutions will use imitation learning, or learning from comparisons. Submitted agents will be evaluated based on how well they complete the tasks, as judged by humans given the same description of the tasks. |
Rohin Shah · Cody Wild · Steven Wang · Neel Alex · Brandon Houghton · William Guss · Sharada Mohanty · Stephanie Milani · Nicholay Topin · Pieter Abbeel · Stuart Russell · Anca Dragan
|
Thu 11:44 a.m. - 2:44 p.m.
|
Breakout: BASALT: A MineRL Competition on Solving Human-Judged Tasks
(
Breakout session
)
|
🔗 |
Thu 11:45 a.m. - 12:05 p.m.
|
IGLU: Interactive Grounded Language Understanding in a Collaborative Environment + Q&A
(
Talk
)
link »
SlidesLive Video » Human intelligence has the remarkable ability to quickly adapt to new tasks and environments. Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions. To facilitate research in this direction, we propose IGLU: Interactive Grounded Language Understanding in a Collaborative Environment. The primary goal of the competition is to approach the problem of how to build interactive agents that learn to solve a task while provided with grounded natural language instructions in a collaborative environment. Understanding the complexity of the challenge, we split it into sub-tasks to make it feasible for participants. |
Julia Kiseleva · Ziming Li · Mohammad Aliannejadi · Maartje Anne ter Hoeve · Mikhail Burtsev · Alexey Skrynnik · Artem Zholus · Aleksandr Panov · Katja Hofmann · Kavya Srinet · arthur szlam · Michel Galley · Ahmed Awadallah
|
Thu 12:04 p.m. - 3:04 p.m.
|
Breakout: IGLU: Interactive Grounded Language Understanding in a Collaborative Environment
(
Breakout session
)
|
🔗 |
Author Information
Douwe Kiela (Facebook AI Research)
Marco Ciccone (Politecnico di Torino)
Barbara Caputo (Politecnico di Torino)
More from the Same Authors
-
2021 : Public Information Representation for Adversarial Team Games »
Luca Carminati · Federico Cacciamani · Marco Ciccone · Nicola Gatti -
2022 : Perturbation Augmentation for Fairer NLP »
Rebecca Qian · Candace Ross · Jude Fernandes · Eric Michael Smith · Douwe Kiela · Adina Williams -
2022 Workshop: Human Evaluation of Generative Models »
Divyansh Kaushik · Jennifer Hsia · Jessica Huynh · Yonadav Shavit · Samuel Bowman · Ting-Hao Huang · Douwe Kiela · Zachary Lipton · Eric Michael Smith -
2022 Competition: NeurIPS 2022 Competition Track: Overview & Results »
Marco Ciccone · Gustavo Stolovitzky · Jake Albrecht -
2021 : Spotlight Talk: Public Information Representation for Adversarial Team Games »
Luca Carminati · Federico Cacciamani · Marco Ciccone · Nicola Gatti -
2021 : Facebook - Data Centric Infrastructure »
Douwe Kiela -
2021 Demonstration: Demonstrations 4 »
Douwe Kiela · Barbara Caputo · Marco Ciccone -
2021 : Intro »
Marco Ciccone -
2021 : Introduction to Competition Day 4 »
Marco Ciccone -
2021 Competition: Competition Track Day 4: Overviews + Breakout Sessions »
Douwe Kiela · Marco Ciccone · Barbara Caputo -
2021 Poster: True Few-Shot Learning with Language Models »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 : Invited talk - Douwe Kiela »
Douwe Kiela -
2021 : Introduction to Competition Day 3 »
Marco Ciccone -
2021 Demonstration: Demonstrations 3 »
Douwe Kiela · Barbara Caputo · Marco Ciccone -
2021 : Intro »
Marco Ciccone -
2021 Poster: Dynaboard: An Evaluation-As-A-Service Platform for Holistic Next-Generation Benchmarking »
Zhiyi Ma · Kawin Ethayarajh · Tristan Thrush · Somya Jain · Ledell Wu · Robin Jia · Christopher Potts · Adina Williams · Douwe Kiela -
2021 Demonstration: Demonstrations 2 »
Douwe Kiela · Barbara Caputo · Marco Ciccone -
2021 : Intro »
Douwe Kiela -
2021 : Introduction to Competition Day 2 »
Barbara Caputo -
2021 Competition: Competition Track Day 2: Overviews + Breakout Sessions »
Douwe Kiela · Marco Ciccone · Barbara Caputo -
2021 Competition: Competition Track Day 1: Overviews + Breakout Sessions »
Douwe Kiela · Marco Ciccone · Barbara Caputo -
2021 : Introduction Competion Day 1 »
Douwe Kiela -
2021 Poster: Human-Adversarial Visual Question Answering »
Sasha Sheng · Amanpreet Singh · Vedanuj Goswami · Jose Magana · Tristan Thrush · Wojciech Galuba · Devi Parikh · Douwe Kiela -
2021 Demonstration: Demonstrations 1 »
Douwe Kiela · Barbara Caputo · Marco Ciccone -
2021 : Introduction »
Douwe Kiela -
2020 : Q & A and Panel Session with Dan Weld, Kristen Grauman, Scott Yih, Emma Brunskill, and Alex Ratner »
Kristen Grauman · Wen-tau Yih · Alexander Ratner · Emma Brunskill · Douwe Kiela · Daniel S. Weld -
2020 Workshop: HAMLETS: Human And Model in the Loop Evaluation and Training Strategies »
Divyansh Kaushik · Bhargavi Paranjape · Forough Arabshahi · Yanai Elazar · Yixin Nie · Max Bartolo · Polina Kirichenko · Pontus Lars Erik Saito Stenetorp · Mohit Bansal · Zachary Lipton · Douwe Kiela -
2020 : Opening Remarks »
Divyansh Kaushik · Bhargavi Paranjape · Douwe Kiela -
2020 : The Hateful Memes Challenge: Live award ceremony and winner presentations »
Douwe Kiela -
2020 : The Hateful Memes Challenge: Competition Overview »
Douwe Kiela -
2020 Poster: The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes »
Douwe Kiela · Hamed Firooz · Aravind Mohan · Vedanuj Goswami · Amanpreet Singh · Pratik Ringshia · Davide Testuggine -
2020 Poster: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks »
Patrick Lewis · Ethan Perez · Aleksandra Piktus · Fabio Petroni · Vladimir Karpukhin · Naman Goyal · Heinrich Küttler · Mike Lewis · Wen-tau Yih · Tim Rocktäschel · Sebastian Riedel · Douwe Kiela -
2020 Poster: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2020 Spotlight: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2019 : Audrey Durand, Douwe Kiela, Kamalika Chaudhuri moderated by Yann Dauphin »
Audrey Durand · Kamalika Chaudhuri · Yann Dauphin · Orhan Firat · Dilan Gorur · Douwe Kiela -
2019 : Douwe Kiela - Benchmarking Progress in AI: A New Benchmark for Natural Language Understanding »
Douwe Kiela -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 Poster: Hyperbolic Graph Neural Networks »
Qi Liu · Maximilian Nickel · Douwe Kiela -
2018 Workshop: Emergent Communication Workshop »
Jakob Foerster · Angeliki Lazaridou · Ryan Lowe · Igor Mordatch · Douwe Kiela · Kyunghyun Cho -
2018 : Panel Discussion »
Antonio Torralba · Douwe Kiela · Barbara Landau · Angeliki Lazaridou · Joyce Chai · Christopher Manning · Stevan Harnad · Roozbeh Mottaghi -
2018 : Douwe Kiela - Learning Multimodal Embeddings »
Douwe Kiela -
2018 Poster: NAIS-Net: Stable Deep Networks from Non-Autonomous Differential Equations »
Marco Ciccone · Marco Gallieri · Jonathan Masci · Christian Osendorfer · Faustino Gomez -
2017 Workshop: Emergent Communication Workshop »
Jakob Foerster · Igor Mordatch · Angeliki Lazaridou · Kyunghyun Cho · Douwe Kiela · Pieter Abbeel -
2017 Poster: Poincaré Embeddings for Learning Hierarchical Representations »
Maximilian Nickel · Douwe Kiela -
2017 Spotlight: Poincaré Embeddings for Learning Hierarchical Representations »
Maximilian Nickel · Douwe Kiela -
2009 Workshop: Learning from Multiple Sources with Applications to Robotics »
Barbara Caputo · Nicolò Cesa-Bianchi · David R Hardoon · Gayle Leen · Francesco Orabona · Jaakko Peltonen · Simon Rogers -
2009 Poster: Who’s Doing What: Joint Modeling of Names and Verbs for Simultaneous Face and Pose Annotation »
Jie Luo · Barbara Caputo · Vittorio Ferrari