Timezone: »
Strategic classification concerns the problem of training a classifier that will ultimately observe data generated according to strategic agents’ responses. The commonly adopted setting is that the agents are fully rational and can best respond to a classifier, and the classifier is aiming to maximize its robustness to the strategic “manipulations”. This talk revisits a couple of dynamics concepts in the above formulation. The first question we try to revisit is: are all changes considered undesirable? We observe that in many application settings, changes in agents’ profile X can lead to true improvement in their target variable Y [1,2]. This observation requires us to revisit the objective function of the learner, and study the possibility of inducing an improved population from the agents. The second question we revisit is: do agents respond rationally? Inspired by evolutionary game theory, we introduce a dynamical agent response model using replicator dynamics to model agents’ potentially non-fully rational responses to a sequence of classifiers [3]. We characterize the dynamics of this model and offer observations of its fairness implication in such a long-term dynamical environment.
References:
[1] Linear Classifiers that Encourage Constructive Adaptation, Yatong Chen, Jialu Wang and Yang Liu, 2021.
[2] Induced Domain Adaptation, Yang Liu, Yatong Chen, Jiaheng Wei, 2021.
[3] Unintended Selection: Persistent Qualification Rate Disparities and Interventions, Reilly Raab and Yang Liu, Neural Information Processing Systems (NeurIPS), 2021
Author Information
Yang Liu (UC Santa Cruz)
More from the Same Authors
-
2021 Spotlight: Unintended Selection: Persistent Qualification Rate Disparities and Interventions »
Reilly Raab · Yang Liu -
2021 : Unfairness Despite Awareness: Group-Fair Classification with Strategic Agents »
Andrew Estornell · Sanmay Das · Yang Liu · Yevgeniy Vorobeychik -
2021 : Unfairness Despite Awareness: Group-Fair Classification with Strategic Agents »
Andrew Estornell · Sanmay Das · Yang Liu · Yevgeniy Vorobeychik -
2022 : Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors »
Zeyu Tang · Yatong Chen · Yang Liu · Kun Zhang -
2022 : Fast Implicit Constrained Optimization of Non-decomposable Objectives for Deep Networks »
Yatong Chen · Abhishek Kumar · Yang Liu · Ehsan Amid -
2022 Spotlight: Certifying Some Distributional Fairness with Subpopulation Decomposition »
Mintong Kang · Linyi Li · Maurice Weber · Yang Liu · Ce Zhang · Bo Li -
2022 Poster: Fairness Transferability Subject to Bounded Distribution Shift »
Yatong Chen · Reilly Raab · Jialu Wang · Yang Liu -
2022 Poster: Certifying Some Distributional Fairness with Subpopulation Decomposition »
Mintong Kang · Linyi Li · Maurice Weber · Yang Liu · Ce Zhang · Bo Li -
2022 Poster: Adaptive Data Debiasing through Bounded Exploration »
Yifan Yang · Yang Liu · Parinaz Naghizadeh -
2021 : Bounded Fairness Transferability subject to Distribution Shift »
Reilly Raab · Yatong Chen · Yang Liu -
2021 Poster: Unintended Selection: Persistent Qualification Rate Disparities and Interventions »
Reilly Raab · Yang Liu -
2021 Poster: Can Less be More? When Increasing-to-Balancing Label Noise Rates Considered Beneficial »
Yang Liu · Jialu Wang -
2021 Poster: Policy Learning Using Weak Supervision »
Jingkang Wang · Hongyi Guo · Zhaowei Zhu · Yang Liu -
2021 Poster: Bandit Learning with Delayed Impact of Actions »
Wei Tang · Chien-Ju Ho · Yang Liu -
2020 : Contributed Talk 4: Strategic Recourse in Linear Classification »
Yatong Chen · Yang Liu -
2020 Poster: Learning Strategy-Aware Linear Classifiers »
Yiling Chen · Yang Liu · Chara Podimata -
2020 Poster: How do fair decisions fare in long-term qualification? »
Xueru Zhang · Ruibo Tu · Yang Liu · Mingyan Liu · Hedvig Kjellstrom · Kun Zhang · Cheng Zhang -
2020 Poster: Optimal Query Complexity of Secure Stochastic Convex Optimization »
Wei Tang · Chien-Ju Ho · Yang Liu