Timezone: »
Invited talk 4
Tengyu Ma
Tue Dec 14 10:00 AM -- 10:30 AM (PST) @
Author Information
Tengyu Ma (Stanford University)
More from the Same Authors
-
2021 : Sharp Bounds for FedAvg (Local SGD) »
Margalit Glasgow · Honglin Yuan · Tengyu Ma -
2022 : How Sharpness-Aware Minimization Minimizes Sharpness? »
Kaiyue Wen · Tengyu Ma · Zhiyuan Li -
2022 : How Sharpness-Aware Minimization Minimizes Sharpness? »
Kaiyue Wen · Tengyu Ma · Zhiyuan Li -
2022 : First Steps Toward Understanding the Extrapolation of Nonlinear Models to Unseen Domains »
Kefan Dong · Tengyu Ma -
2022 : First Steps Toward Understanding the Extrapolation of Nonlinear Models to Unseen Domains »
Kefan Dong · Tengyu Ma -
2022 Poster: Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers »
Colin Wei · Yining Chen · Tengyu Ma -
2022 Poster: Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments »
Yining Chen · Elan Rosenfeld · Mark Sellke · Tengyu Ma · Andrej Risteski -
2022 Poster: Beyond Separability: Analyzing the Linear Transferability of Contrastive Representations to Related Subpopulations »
Jeff Z. HaoChen · Colin Wei · Ananya Kumar · Tengyu Ma -
2021 : Contributed Talk 4: Sharp Bounds for FedAvg (Local SGD) »
Margalit Glasgow · Honglin Yuan · Tengyu Ma -
2020 Poster: Federated Accelerated Stochastic Gradient Descent »
Honglin Yuan · Tengyu Ma -
2020 Poster: Self-training Avoids Using Spurious Features Under Domain Shift »
Yining Chen · Colin Wei · Ananya Kumar · Tengyu Ma -
2020 Poster: Beyond Lazy Training for Over-parameterized Tensor Decomposition »
Xiang Wang · Chenwei Wu · Jason Lee · Tengyu Ma · Rong Ge -
2020 Poster: Model-based Adversarial Meta-Reinforcement Learning »
Zichuan Lin · Garrett Thomas · Guangwen Yang · Tengyu Ma -
2020 Poster: MOPO: Model-based Offline Policy Optimization »
Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma -
2019 Poster: Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss »
Kaidi Cao · Colin Wei · Adrien Gaidon · Nikos Arechiga · Tengyu Ma -
2019 Poster: Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel »
Colin Wei · Jason Lee · Qiang Liu · Tengyu Ma -
2019 Spotlight: Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel »
Colin Wei · Jason Lee · Qiang Liu · Tengyu Ma -
2019 Poster: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2019 Spotlight: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2019 Poster: Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation »
Colin Wei · Tengyu Ma -
2019 Poster: Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks »
Yuanzhi Li · Colin Wei · Tengyu Ma -
2019 Spotlight: Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation »
Colin Wei · Tengyu Ma -
2019 Spotlight: Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks »
Yuanzhi Li · Colin Wei · Tengyu Ma