Timezone: »
Meta-learning is an important machine learning paradigm leveraging experience from previous tasks to make better predictions on the task at hand. This competition focuses on supervised learning, and more particularly `few shot learning' classification settings, aiming at learning a good model from very few examples, typically 1 to 5 per class. A starting kit will be provided, consisting of a public dataset and various baseline implementations, including MAML (Finn et al., 2017) and Prototypical Networks (Snell et al., 2017). This way, it should be easy to get started and build upon the various resources in the field. The competition consists of novel datasets from various domains, including healthcare, ecology, biology, and chemistry. The competition will consist of three phases: a public phase, a feedback phase, and a final phase. The last two phases will be run with code submissions, fully bind-tested on the Codalab challenge platform. A single (final) submission will be evaluated during the final phase, using five fresh datasets, currently unknown to the meta-learning community.
Author Information
Adrian El Baz (ChaLearn)
Isabelle Guyon (UPSud, INRIA, University Paris-saclay and ChaLearn)
Zhengying Liu (Inria/U. Paris-Saclay)
Jan Van Rijn (Leiden University)
Haozhe Sun (Paris-Saclay University)
Sébastien Treguer (INRIA / Chalearn)
Wei-Wei Tu (4Paradigm Inc.)
Ihsan Ullah (Université Paris Saclay)
Joaquin Vanschoren (Eindhoven University of Technology)
Phan Ahn Vu (Paris-Saclay University)
More from the Same Authors
-
2021 : OmniPrint: A Configurable Printed Character Synthesizer »
Haozhe Sun · Wei-Wei Tu · Isabelle Guyon -
2022 Workshop: NeurIPS 2022 Workshop on Meta-Learning »
Huaxiu Yao · Frank Hutter · Eleni Triantafillou · Fabio Ferreira · Joaquin Vanschoren · Qi Lei -
2021 Workshop: 5th Workshop on Meta-Learning »
Erin Grant · Fábio Ferreira · Frank Hutter · Jonathan Schwarz · Joaquin Vanschoren · Huaxiu Yao -
2021 Panel: The Role of Benchmarks in the Scientific Progress of Machine Learning »
Lora Aroyo · Samuel Bowman · Isabelle Guyon · Joaquin Vanschoren -
2021 : Learning By Doing: Controlling a Dynamical System using Control Theory, Reinforcement Learning, or Causality + Q&A »
Sebastian Weichwald · Niklas Pfister · Dominik Baumann · Isabelle Guyon · Oliver Kroemer · Tabitha Lee · Søren Wengel Mogensen · Jonas Peters · Sebastian Trimpe -
2021 Poster: Dual Adaptivity: A Universal Algorithm for Minimizing the Adaptive Regret of Convex Functions »
Lijun Zhang · Guanghui Wang · Wei-Wei Tu · Wei Jiang · Zhi-Hua Zhou -
2021 Affinity Workshop: New in ML 2 »
Haozhe Sun · Wenzhuo Liu · Joseph Pedersen -
2021 Affinity Workshop: New in ML 1 »
Haozhe Sun · Wenzhuo Liu · Joseph Pedersen -
2021 : Opening address »
Haozhe Sun -
2020 : Keynote talk by Isabelle Guyon and Evelyne Viegas - "AI Competitions and the Science Behind Contests" »
Isabelle Guyon · Evelyne Viegas -
2020 Poster: Deep Statistical Solvers »
Balthazar Donon · Zhengying Liu · Wenzhuo LIU · Isabelle Guyon · Antoine Marot · Marc Schoenauer -
2019 : The AutoDL Challenge »
Sébastien Treguer · Ildoo Kim · Ruirui Guo · Zhipeng Luo · Minghui Zhao · Yazhou Li · Xiawei Guo · Wenpeng Zhang · Noriaki Ota -
2019 : Open Space Topic “The Organization of Challenges for the Benefit of More Diverse Communities” »
Adrienne Mendrik · Isabelle Guyon · Wei-Wei Tu · Evelyne Viegas · Ming LI -
2019 Workshop: CiML 2019: Machine Learning Competitions for All »
Adrienne Mendrik · Wei-Wei Tu · Wei-Wei Tu · Isabelle Guyon · Evelyne Viegas · Ming LI -
2018 : AutoDL challenge design and beta tests, Zhengying Liu, Olivier Bousquet, Andre Elisseeff, Isabelle Guyon, Adrien Pavao, Lisheng Sun-Hosoya, and Sebastien Treguer »
Zhengying Liu · Sébastien Treguer