Timezone: »
Meta-learning is an important machine learning paradigm leveraging experience from previous tasks to make better predictions on the task at hand. This competition focuses on supervised learning, and more particularly `few shot learning' classification settings, aiming at learning a good model from very few examples, typically 1 to 5 per class. A starting kit will be provided, consisting of a public dataset and various baseline implementations, including MAML (Finn et al., 2017) and Prototypical Networks (Snell et al., 2017). This way, it should be easy to get started and build upon the various resources in the field. The competition consists of novel datasets from various domains, including healthcare, ecology, biology, and chemistry. The competition will consist of three phases: a public phase, a feedback phase, and a final phase. The last two phases will be run with code submissions, fully bind-tested on the Codalab challenge platform. A single (final) submission will be evaluated during the final phase, using five fresh datasets, currently unknown to the meta-learning community.
Author Information
Adrian El Baz (ChaLearn)
Isabelle Guyon (UPSud, INRIA, University Paris-saclay and ChaLearn)

Isabelle Guyon recently joined Google Brain as a research scientist. She is also professor of artificial intelligence at Université Paris-Saclay (Orsay). Her areas of expertise include computer vision, bioinformatics, and power systems. She is best known for being a co-inventor of Support Vector Machines. Her recent interests are in automated machine learning, meta-learning, and data-centric AI. She has been a strong promoter of challenges and benchmarks, and is president of ChaLearn, a non-profit dedicated to organizing machine learning challenges. She is community lead of Codalab competitions, a challenge platform used both in academia and industry. She co-organized the “Challenges in Machine Learning Workshop” @ NeurIPS between 2014 and 2019, launched the "NeurIPS challenge track" in 2017 while she was general chair, and pushed the creation of the "NeurIPS datasets and benchmark track" in 2021, as a NeurIPS board member.
Zhengying Liu (Inria/U. Paris-Saclay)
Jan N. Van Rijn (Leiden University)
Haozhe Sun (Paris-Saclay University)
Sébastien Treguer (INRIA / Chalearn)
Wei-Wei Tu (4Paradigm Inc.)
Ihsan Ullah (Université Paris Saclay)
Joaquin Vanschoren (Eindhoven University of Technology)
Phan Ahn Vu (Paris-Saclay University)
More from the Same Authors
-
2021 : OmniPrint: A Configurable Printed Character Synthesizer »
Haozhe Sun · Wei-Wei Tu · Isabelle Guyon -
2022 : Fifteen-minute Competition Overview Video »
Dustin Carrión-Ojeda · Ihsan Ullah · Sergio Escalera · Isabelle Guyon · Felix Mohr · Manh Hung Nguyen · Joaquin Vanschoren -
2022 : LOTUS: Learning to learn with Optimal Transport in Unsupervised Scenarios »
prabhant singh · Joaquin Vanschoren -
2023 Poster: DataPerf: Benchmarks for Data-Centric AI Development »
Mark Mazumder · Colby Banbury · Xiaozhe Yao · Bojan Karlaš · William Gaviria Rojas · Sudnya Diamos · Greg Diamos · Lynn He · Alicia Parrish · Hannah Rose Kirk · Jessica Quaye · Charvi Rastogi · Douwe Kiela · David Jurado · David Kanter · Rafael Mosquera · Will Cukierski · Juan Ciro · Lora Aroyo · Bilge Acun · Lingjiao Chen · Mehul Raje · Max Bartolo · Evan Sabri Eyuboglu · Amirata Ghorbani · Emmett Goodman · Addison Howard · Oana Inel · Tariq Kane · Christine R. Kirkpatrick · D. Sculley · Tzu-Sheng Kuo · Jonas Mueller · Tristan Thrush · Joaquin Vanschoren · Margaret Warren · Adina Williams · Serena Yeung · Newsha Ardalani · Praveen Paritosh · Ce Zhang · James Zou · Carole-Jean Wu · Cody Coleman · Andrew Ng · Peter Mattson · Vijay Janapa Reddi -
2023 Tutorial: Data-Centric AI for reliable and responsible AI: from theory to practice »
Isabelle Guyon · Nabeel Seedat · Mihaela van der Schaar -
2023 Competition: NeurIPS 2023 Machine Unlearning Competition »
Eleni Triantafillou · Fabian Pedregosa · Meghdad Kurmanji · Kairan ZHAO · Gintare Karolina Dziugaite · Peter Triantafillou · Ioannis Mitliagkas · Vincent Dumoulin · Lisheng Sun · Peter Kairouz · Julio C Jacques Junior · Jun Wan · Sergio Escalera · Isabelle Guyon -
2023 Affinity Workshop: New in ML »
Zhen Xu · Mélisande Teng · Isabelle Guyon -
2022 Competition: Cross-Domain MetaDL: Any-Way Any-Shot Learning Competition with Novel Datasets from Practical Domains »
Dustin Carrión-Ojeda · Ihsan Ullah · Sergio Escalera · Isabelle Guyon · Felix Mohr · Manh Hung Nguyen · Joaquin Vanschoren -
2022 Workshop: NeurIPS 2022 Workshop on Meta-Learning »
Huaxiu Yao · Eleni Triantafillou · Fabio Ferreira · Joaquin Vanschoren · Qi Lei -
2022 Poster: Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification »
Ihsan Ullah · Dustin Carrión-Ojeda · Sergio Escalera · Isabelle Guyon · Mike Huisman · Felix Mohr · Jan N. van Rijn · Haozhe Sun · Joaquin Vanschoren · Phan Anh Vu -
2022 : Isabelle Guyon »
Isabelle Guyon -
2022 Invited Talk: The Data-Centric Era: How ML is Becoming an Experimental Science »
Isabelle Guyon -
2022 : NeurIPS Competitions – Evolution and Opportunities »
Isabelle Guyon · Evelyne Viegas -
2022 Mentorship: New In ML »
Zhen Xu · Mélisande Teng · Jie Fu · Romain Egele · Daochen Zha · Minhao Fan · Eulalie Boucher · Alexandra Volokhova · Isabelle Guyon -
2021 Workshop: 5th Workshop on Meta-Learning »
Erin Grant · Fábio Ferreira · Frank Hutter · Jonathan Richard Schwarz · Joaquin Vanschoren · Huaxiu Yao -
2021 Panel: The Role of Benchmarks in the Scientific Progress of Machine Learning »
Lora Aroyo · Samuel Bowman · Isabelle Guyon · Joaquin Vanschoren -
2021 : Learning By Doing: Controlling a Dynamical System using Control Theory, Reinforcement Learning, or Causality + Q&A »
Sebastian Weichwald · Niklas Pfister · Dominik Baumann · Isabelle Guyon · Oliver Kroemer · Tabitha Lee · Søren Wengel Mogensen · Jonas Peters · Sebastian Trimpe -
2021 Poster: Dual Adaptivity: A Universal Algorithm for Minimizing the Adaptive Regret of Convex Functions »
Lijun Zhang · Guanghui Wang · Wei-Wei Tu · Wei Jiang · Zhi-Hua Zhou -
2021 Affinity Workshop: New in ML 2 »
Haozhe Sun · Wenzhuo Liu · Joseph Pedersen -
2021 Affinity Workshop: New in ML 1 »
Haozhe Sun · Wenzhuo Liu · Joseph Pedersen -
2021 : Opening address »
Haozhe Sun -
2020 : Keynote talk by Isabelle Guyon and Evelyne Viegas - "AI Competitions and the Science Behind Contests" »
Isabelle Guyon · Evelyne Viegas -
2020 Poster: Deep Statistical Solvers »
Balthazar Donon · Zhengying Liu · Wenzhuo LIU · Isabelle Guyon · Antoine Marot · Marc Schoenauer -
2019 : The AutoDL Challenge »
Sébastien Treguer · Ildoo Kim · Ruirui Guo · Zhipeng Luo · Minghui Zhao · Yazhou Li · Xiawei Guo · Wenpeng Zhang · Noriaki Ota -
2019 : Open Space Topic “The Organization of Challenges for the Benefit of More Diverse Communities” »
Adrienne Mendrik · Isabelle Guyon · Wei-Wei Tu · Evelyne Viegas · Ming LI -
2019 Workshop: CiML 2019: Machine Learning Competitions for All »
Adrienne Mendrik · Wei-Wei Tu · Wei-Wei Tu · Isabelle Guyon · Evelyne Viegas · Ming LI -
2019 : Welcome and Opening Remarks »
Adrienne Mendrik · Wei-Wei Tu · Isabelle Guyon · Evelyne Viegas · Ming LI -
2018 : AutoDL challenge design and beta tests, Zhengying Liu, Olivier Bousquet, Andre Elisseeff, Isabelle Guyon, Adrien Pavao, Lisheng Sun-Hosoya, and Sebastien Treguer »
Zhengying Liu · Sébastien Treguer -
2018 : Afternoon Welcome - Isabelle Guyon and Evelyne Viegas »
Isabelle Guyon -
2018 Workshop: CiML 2018 - Machine Learning competitions "in the wild": Playing in the real world or in real time »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : AutoML3 - LifeLong ML with concept drift Challenge: Overview and award ceremony »
Hugo Jair Escalante · Isabelle Guyon · Daniel Silver · Evelyne Viegas · Wei-Wei Tu -
2018 : Evaluating Causation Coefficients »
Isabelle Guyon -
2017 Workshop: Machine Learning Challenges as a Research Tool »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2017 : Introduction - Isabelle Guyon and Evelyne Viegas »
Isabelle Guyon -
2016 Workshop: Machine Learning for Spatiotemporal Forecasting »
Florin Popescu · Sergio Escalera · Xavier Baró · Stephane Ayache · Isabelle Guyon -
2016 : Gaming challenges and encouraging collaborations »
Sergio Escalera · Isabelle Guyon -
2016 Workshop: Challenges in Machine Learning: Gaming and Education »
Isabelle Guyon · Evelyne Viegas · Balázs Kégl · Ben Hamner · Sergio Escalera -
2016 Demonstration: Biometric applications of CNNs: get a job at "Impending Technologies"! »
Sergio Escalera · Isabelle Guyon · Baiyu Chen · Marc Quintana · Umut Güçlü · Yağmur Güçlütürk · Xavier Baró · Rob van Lier · Carlos Andujar · Marcel A. J. van Gerven · Bernhard E Boser · Luke Wang -
2015 Workshop: Challenges in Machine Learning (CiML 2015): "Open Innovation" and "Coopetitions" »
Isabelle Guyon · Evelyne Viegas · Ben Hamner · Balázs Kégl -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner -
2013 Workshop: NIPS 2013 Workshop on Causality: Large-scale Experiment Design and Inference of Causal Mechanisms »
Isabelle Guyon · Leon Bottou · Bernhard Schölkopf · Alexander Statnikov · Evelyne Viegas · james m robins -
2012 Demonstration: Gesture recognition with Kinect »
Isabelle Guyon -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh -
2009 Mini Symposium: Causality and Time Series Analysis »
Florin Popescu · Isabelle Guyon · Guido Nolte -
2009 Demonstration: Causality Workbench »
Isabelle Guyon -
2008 Workshop: Causality: objectives and assessment »
Isabelle Guyon · Dominik Janzing · Bernhard Schölkopf -
2007 Demonstration: CLOP: a Matlab Learning Object Package »
Amir Reza Saffari Azar Alamdari · Isabelle Guyon · Hugo Jair Escalante · Gökhan H Bakir · Gavin Cawley -
2006 Workshop: Multi-level Inference Workshop and Model Selection Game »
Isabelle Guyon