Timezone: »
The Machine Learning for Combinatorial Optimization (ML4CO) competition aims at improving a state-of-the-art mathematical solver by replacing key heuristic components with machine learning models trained on historical data. To that end participants will compete on the three following challenges, each corresponding to a distinct control task arising in a branch-and-bound solver: producing good solutions (primal task), proving optimality via branching (dual task), and choosing the best solver parameters (configuration task). Each task is exposed through an OpenAI-gym Python API build on top of the open-source solver SCIP, using the Ecole library. Participants can compete in any subset of the proposed challenges. While we encourage solutions derived from the reinforcement learning paradigm, any algorithmic solution respecting the competition's API is accepted.
Author Information
Maxime Gasse (Polytechnique Montréal)
I am a machine learning researcher within the Data Science for Real-Time Decision Making Canada Excellence Research Chair (CERC), and also part of the MILA research institute on artificial intelligence in Montréal, Canada. The question that motivates my research is: can machines think? My broad research interests include: - probabilistic graphical models and their theoretical properties (my PhD Thesis) - structured prediction, in particular multi-label classification - combinatorial optimization using machine learning (see our Ecole library) - causality, specifically in the context of reinforcement learning
Simon Bowly (Monash University)
Chris Cameron (University of British Columbia)
Quentin Cappart (Polytechnique Montréal)
Jonas Charfreitag (Uni Bonn)
Laurent Charlin (MILA / U.Montreal)
Shipra Agrawal (Columbia University)
Didier Chetelat (Polytechnique Montreal)
Justin Dumouchelle (Polytechnique Montréal)
Ambros Gleixner (Zuse Institute Berlin and HTW Berlin)
Aleksandr Kazachkov (University of Florida)
Elias Khalil (University of Toronto)
Pawel Lichocki (Google Research)
Andrea Lodi (École Polytechnique Montréal)
Miles Lubin (Google Research)
Christopher Morris (Mila, McGill University)
Dimitri Papageorgiou (ExxonMobil Corporate Research)
Augustin Parjadis (Polytechnique Montréal)
Sebastian Pokutta (Zuse Institute Berlin)
Antoine Prouvost (Mila)
Yuandong Tian (Facebook AI Research)
Lara Scavuzzo (TU Delft)
Giulia Zarpellon (Polytechnique Montreal)
More from the Same Authors
-
2020 : Session B, Poster 10: Ecole: A Gym-Like Library For Machine Learning In Combinatorial Optimization Solvers »
Antoine Prouvost -
2021 Competition: Machine Learning for Combinatorial Optimization (ML4CO) »
Christopher Morris · Maxime Gasse -
2021 : Deep Neural Networks pruning via the Structured Perspective Regularization »
Matteo Cacciola · Andrea Lodi · Xinlin Li -
2022 : PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library with Linear Objective Function »
Bo Tang · Elias Khalil -
2022 : Accelerated Riemannian Optimization: Handling Constraints to Bound Geometric Penalties »
David Martinez-Rubio · Sebastian Pokutta -
2022 : Attention for Compositional Modularity »
Oleksiy Ostapenko · Pau Rodriguez · Alexandre Lacoste · Laurent Charlin -
2022 : Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus »
Yudong Xu · Elias Khalil · Scott Sanner -
2022 : Using Confounded Data in Offline RL »
Maxime Gasse · Damien GRASSET · Guillaume Gaudron · Pierre-Yves Oudeyer -
2022 : Panel RL Implementation »
Xiaolin Ge · Alborz Geramifard · Kence Anderson · Craig Buhr · Robert Nishihara · Yuandong Tian -
2022 Poster: Fast Algorithms for Packing Proportional Fairness and its Dual »
Francisco Criado · David Martinez-Rubio · Sebastian Pokutta -
2022 Poster: Learning to Compare Nodes in Branch and Bound with Graph Neural Networks »
Abdel Ghani Labassi · Didier Chetelat · Andrea Lodi -
2022 Poster: Neur2SP: Neural Two-Stage Stochastic Programming »
Rahul Mihir Patel · Justin Dumouchelle · Elias Khalil · Merve Bodur -
2022 Poster: Learning to Branch with Tree MDPs »
Lara Scavuzzo · Feng Chen · Didier Chetelat · Maxime Gasse · Andrea Lodi · Neil Yorke-Smith · Karen Aardal -
2022 Poster: Online Allocation and Learning in the Presence of Strategic Agents »
Steven Yin · Shipra Agrawal · Assaf Zeevi -
2022 Poster: A Deep Reinforcement Learning Framework for Column Generation »
Cheng Chi · Amine Aboussalah · Elias Khalil · Juyoung Wang · Zoha Sherkat-Masoumi -
2021 : ML-guided iterative refinement for system optimization »
Yuandong Tian -
2021 : Community Infrastructure for Applying Reinforcement Learning to Compiler Optimizations »
Chris Cummins · Bram Wasti · Brandon Cui · Olivier Teytaud · Benoit Steiner · Yuandong Tian · Hugh Leather -
2021 Poster: Latent Execution for Neural Program Synthesis Beyond Domain-Specific Languages »
Xinyun Chen · Dawn Song · Yuandong Tian -
2021 Poster: Learning to Schedule Heuristics in Branch and Bound »
Antonia Chmiela · Elias Khalil · Ambros Gleixner · Andrea Lodi · Sebastian Pokutta -
2021 Poster: Continual Learning via Local Module Composition »
Oleksiy Ostapenko · Pau Rodriguez · Massimo Caccia · Laurent Charlin -
2021 Poster: Pretraining Representations for Data-Efficient Reinforcement Learning »
Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville -
2021 Poster: NovelD: A Simple yet Effective Exploration Criterion »
Tianjun Zhang · Huazhe Xu · Xiaolong Wang · Yi Wu · Kurt Keutzer · Joseph Gonzalez · Yuandong Tian -
2021 Poster: MADE: Exploration via Maximizing Deviation from Explored Regions »
Tianjun Zhang · Paria Rashidinejad · Jiantao Jiao · Yuandong Tian · Joseph Gonzalez · Stuart Russell -
2021 Poster: Reconstruction for Powerful Graph Representations »
Leonardo Cotta · Christopher Morris · Bruno Ribeiro -
2021 Poster: Learning Space Partitions for Path Planning »
Kevin Yang · Tianjun Zhang · Chris Cummins · Brandon Cui · Benoit Steiner · Linnan Wang · Joseph Gonzalez · Dan Klein · Yuandong Tian -
2021 Poster: Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions »
Alejandro Carderera · Mathieu Besançon · Sebastian Pokutta -
2020 : QA: Yuandong Tian »
Yuandong Tian -
2020 : Contributed Talk: Yuandong Tian »
Yuandong Tian -
2020 : Invited Talk (Yuandong Tian) »
Yuandong Tian -
2020 : Poster Session B »
Ravichandra Addanki · Andreea-Ioana Deac · Yujia Xie · Francesco Landolfi · Antoine Prouvost · Claudius Gros · Renzo Massobrio · Abhishek Cauligi · Simon Alford · Hanjun Dai · Alberto Franzin · Nitish Kumar Panigrahy · Brandon Kates · Iddo Drori · Taoan Huang · Zhou Zhou · Marin Vlastelica · Anselm Paulus · Aaron Zweig · Minsu Cho · Haiyan Yin · Michal Lisicki · Nan Jiang · Haoran Sun -
2020 Poster: Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning »
Massimo Caccia · Pau Rodriguez · Oleksiy Ostapenko · Fabrice Normandin · Min Lin · Lucas Page-Caccia · Issam Hadj Laradji · Irina Rish · Alexandre Lacoste · David Vázquez · Laurent Charlin -
2020 Poster: Hybrid Models for Learning to Branch »
Prateek Gupta · Maxime Gasse · Elias Khalil · Pawan K Mudigonda · Andrea Lodi · Yoshua Bengio -
2020 Poster: Walking in the Shadow: A New Perspective on Descent Directions for Constrained Minimization »
Hassan Mortagy · Swati Gupta · Sebastian Pokutta -
2020 Poster: Synbols: Probing Learning Algorithms with Synthetic Datasets »
Alexandre Lacoste · Pau Rodríguez López · Frederic Branchaud-Charron · Parmida Atighehchian · Massimo Caccia · Issam Hadj Laradji · Alexandre Drouin · Matthew Craddock · Laurent Charlin · David Vázquez -
2020 Poster: Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search »
Linnan Wang · Rodrigo Fonseca · Yuandong Tian -
2020 Session: Orals & Spotlights Track 16: Continual/Meta/Misc Learning »
Laurent Charlin · Cedric Archambeau -
2020 Poster: Joint Policy Search for Multi-agent Collaboration with Imperfect Information »
Yuandong Tian · Qucheng Gong · Yu Jiang -
2019 : Learning in structured MDPs with convex cost function: improved regret bounds for inventory management »
Shipra Agrawal -
2019 : Poster Session #1 »
Adarsh Jamadandi · Sophia Sanborn · Huaxiu Yao · Chen Cai · Yu Chen · Jean-Marc Andreoli · Niklas Stoehr · Shih-Yang Su · Tony Duan · Fábio Ferreira · Davide Belli · Amit Boyarski · Ze Ye · Elahe Ghalebi · Arindam Sarkar · MAHMOUD KHADEMI · Evgeniy Faerman · Joey Bose · Jiaqi Ma · Lin Meng · Seyed Mehran Kazemi · Guangtao Wang · Tong Wu · Yuexin Wu · Chaitanya K. Joshi · Marc Brockschmidt · Daniele Zambon · Colin Graber · Rafaël Van Belle · Osman Asif Malik · Xavier Glorot · Mario Krenn · Chris Cameron · Binxuan Huang · George Stoica · Alexia Toumpa -
2019 Poster: Coda: An End-to-End Neural Program Decompiler »
Cheng Fu · Huili Chen · Haolan Liu · Xinyun Chen · Yuandong Tian · Farinaz Koushanfar · Jishen Zhao -
2019 Poster: Online Continual Learning with Maximal Interfered Retrieval »
Rahaf Aljundi · Eugene Belilovsky · Tinne Tuytelaars · Laurent Charlin · Massimo Caccia · Min Lin · Lucas Page-Caccia -
2019 Poster: Hierarchical Decision Making by Generating and Following Natural Language Instructions »
Hengyuan Hu · Denis Yarats · Qucheng Gong · Yuandong Tian · Mike Lewis -
2019 Poster: One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers »
Ari Morcos · Haonan Yu · Michela Paganini · Yuandong Tian -
2019 Poster: Learning to Perform Local Rewriting for Combinatorial Optimization »
Xinyun Chen · Yuandong Tian -
2019 Poster: Exact Combinatorial Optimization with Graph Convolutional Neural Networks »
Maxime Gasse · Didier Chetelat · Nicola Ferroni · Laurent Charlin · Andrea Lodi -
2018 Poster: Towards Deep Conversational Recommendations »
Raymond Li · Samira Ebrahimi Kahou · Hannes Schulz · Vincent Michalski · Laurent Charlin · Chris Pal -
2018 Poster: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Spotlight: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2017 Poster: ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games »
Yuandong Tian · Qucheng Gong · Wendy Shang · Yuxin Wu · Larry Zitnick -
2017 Oral: ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games »
Yuandong Tian · Qucheng Gong · Wendy Shang · Yuxin Wu · Larry Zitnick -
2017 Poster: Optimistic posterior sampling for reinforcement learning: worst-case regret bounds »
Shipra Agrawal · Randy Jia -
2017 Spotlight: Posterior sampling for reinforcement learning: worst-case regret bounds »
Shipra Agrawal · Randy Jia -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2006 Poster: Automated Hierarchy Discovery for Planning in Partially Observable Domains »
Laurent Charlin · Pascal Poupart · Romy Shioda