Timezone: »

 
Workshop
5th Workshop on Meta-Learning
Erin Grant · Fábio Ferreira · Frank Hutter · Jonathan Richard Schwarz · Joaquin Vanschoren · Huaxiu Yao

Mon Dec 13 03:00 AM -- 12:30 PM (PST) @
Event URL: https://meta-learn.github.io/ »

Recent years have seen rapid progress in meta-learning methods, which transfer knowledge across tasks and domains to efficiently learn new tasks, optimize the learning process itself, and even generate new learning methods from scratch. Meta-learning can be seen as the logical conclusion of the arc that machine learning has undergone in the last decade, from learning classifiers, to learning representations, and finally to learning algorithms that themselves acquire representations, classifiers, and policies for acting in environments. In practice, meta-learning has been shown to yield new state-of-the-art automated machine learning methods, novel deep learning architectures, and substantially improved one-shot learning systems. Moreover, to improve one’s own learning capabilities through experience can also be viewed as a hallmark of intelligent beings, and neuroscience shows a strong connection between human and reward learning and the growing sub-field of meta-reinforcement learning.

Author Information

Erin Grant (UC Berkeley)
Fábio Ferreira (University of Freiburg)
Frank Hutter (University of Freiburg & Bosch)

Frank Hutter is a Full Professor for Machine Learning at the Computer Science Department of the University of Freiburg (Germany), where he previously was an assistant professor 2013-2017. Before that, he was at the University of British Columbia (UBC) for eight years, for his PhD and postdoc. Frank's main research interests lie in machine learning, artificial intelligence and automated algorithm design. For his 2009 PhD thesis on algorithm configuration, he received the CAIAC doctoral dissertation award for the best thesis in AI in Canada that year, and with his coauthors, he received several best paper awards and prizes in international competitions on machine learning, SAT solving, and AI planning. Since 2016 he holds an ERC Starting Grant for a project on automating deep learning based on Bayesian optimization, Bayesian neural networks, and deep reinforcement learning.

Jonathan Richard Schwarz (DeepMind & Gatsby Unit, UCL)
Joaquin Vanschoren (Eindhoven University of Technology)
Huaxiu Yao (Stanford University)

More from the Same Authors