Timezone: »
Out-of-distribution (OOD) generalization and adaptation is a key challenge the field of machine learning (ML) must overcome to achieve its eventual aims associated with artificial intelligence (AI). Humans, and possibly non-human animals, exhibit OOD capabilities far beyond modern ML solutions. It is natural, therefore, to wonder (i) what properties of natural intelligence enable OOD learning (for example, is a cortex required, can human organoids achieve OOD capabilities, etc.), and (ii) what research programs can most effectively identify and extract those properties to inform future ML solutions? Although many workshops have focused on aspects of (i), it is through the additional focus of (ii) that this workshop will best foster collaborations and research to advance the capabilities of ML.
This workshop is designed to bring together the foremost leaders in natural and artificial intelligence, along with the known and unknown upcoming stars in the fields, to answer the above two questions. Our hope is that at the end of the workshop, we will have a head start on identifying a vision that will (1) formalize hypothetical learning mechanisms that enable OOD generalization and adaptation, and characterize their capabilities and limitations; (2) propose experiments to measure, manipulate, and model biological systems to inspire, test, and validate such hypotheses; and (3) implement those hypotheses in hardware/software/wetware solutions to close the empirical gap between natural and artificial intelligence capabilities.
Tue 6:00 a.m. - 6:15 a.m.
|
Introduction
(
Introduction / Welcome Remarks
)
SlidesLive Video » |
Weiwei Yang · Joshua T Vogelstein · Onyema Osuagwu · Soledad Villar · Johnathan Flowers · Weishung Liu · Ronan Perry · Kaleab Alemayehu Kinfu · Teresa Huang 🔗 |
Tue 6:15 a.m. - 7:15 a.m.
|
General Discussion 1 - What is out of distribution (OOD) generalization and why is it important? with Yoshua Bengio, Leyla Isik, Max Welling
(
Discussion panel
)
link »
SlidesLive Video » A panel discussion around what is "Out of Distribution" (OOD) problem and why is the OOD problem important? Panelists: Yoshua Bengio, Leyla Isik, Max Welling Moderators: Joshua Vogelstein, Weiwei Yang |
Yoshua Bengio · Leyla Isik · Max Welling · Joshua T Vogelstein · Weiwei Yang 🔗 |
Tue 7:15 a.m. - 7:30 a.m.
|
Break
|
🔗 |
Tue 7:30 a.m. - 8:00 a.m.
|
Live Q&A Session 1 with Yoshua Bengio, Leyla Isik, Konrad Kording, Bernhard Scholkopf, Amit Sharma, Joshua Vogelstein, Weiwei Yang
(
Live Q&A
)
SlidesLive Video » Join us for live Q&A with our distinguished panelists where attendees can pose questions to the panelists and engage in dialogue. Please feel free to post questions prior to the session in rocket.chat and we will do our best to answer them during the session. Panelists: Yoshua Bengio, Leyla Isik, Konrad Kording, Bernhard Scholkopf, Amit Sharma Moderators: Joshua Vogelstein, Weiwei Yang |
Yoshua Bengio · Leyla Isik · Konrad Kording · Bernhard Schölkopf · Joshua T Vogelstein · Weiwei Yang 🔗 |
Tue 8:00 a.m. - 10:00 a.m.
|
Extended Live Q&A Session and Learning Salon with Joshua Vogelstein
(
Live Q&A
)
SlidesLive Video » Join us for an extension of our Live Q&A Session 1 and Learning Salon, where we will continue to discuss and answer attendee questions! |
Joshua T Vogelstein 🔗 |
Tue 10:00 a.m. - 10:30 a.m.
|
Break
|
🔗 |
Tue 10:30 a.m. - 11:30 a.m.
|
General Discussion 2 - What does the OOD problem mean to you and your field? with Anima Anandkumar, Terry Sejnowski, Chris White: General Discussion 2
(
Discussion panel
)
link »
SlidesLive Video » Panelists: Anima Anandkumar, Chris White, Terry Sejnowski Moderators: Joshua Vogelstein, Weiwei Yang Questions:
|
Anima Anandkumar · Terry Sejnowski · Weiwei Yang · Joshua T Vogelstein 🔗 |
Tue 11:30 a.m. - 11:50 a.m.
|
Break
|
🔗 |
Tue 11:50 a.m. - 12:20 p.m.
|
Live Q&A Session 2 with Susan Athey, Yoshua Bengio, Sujeeth Bharadwaj, Jane Wang, Joshua Vogelstein, Weiwei Yang
(
Live Q&A
)
SlidesLive Video » Join us for live Q&A with our distinguished panelists where attendees can pose questions to the panelists and engage in dialogue. Please feel free to post questions prior to the session in rocket.chat and we will do our best to answer them during the session. Panelists: Susan Athey, Yoshua Bengio, Sujeeth Bharadwaj, Jane Wang Moderators: Joshua Vogelstein, Weiwei Yang |
Susan Athey · Yoshua Bengio · Sujeeth Bharadwaj · Jane Wang · Weiwei Yang · Joshua T Vogelstein 🔗 |
-
|
Constraints with Doug Burger, Alysson Muotri, Ralph-Etienne-Cummings, Florian Engert
(
Discussion panel
)
link »
SlidesLive Video » Panelists: Doug Burger, Alysson Muotri, Ralph Etienne-Cummings, Florian Engert Moderator: Soledad Villar, Teresa Huang Topics for discussion:
|
Doug Burger · Florian Engert · Ralph Etienne-Cummings · Soledad Villar · Teresa Huang 🔗 |
-
|
Causality with Susan Athey, Konrad Kording, Amit Sharma
(
Discussion panel
)
link »
SlidesLive Video » Panelists: Susan Athey, Konrad Kording, Amit Sharma Moderator: Emre Kiciman Opening Question
|
Susan Athey · Konrad Kording · Amit Sharma · Emre Kiciman 🔗 |
-
|
Compositional with Kevin Ellis, Judith Fan, Brenden Lake, Josh Tenenbaum
(
Discussion panel
)
link »
SlidesLive Video » Panelists: Judith Fan, Kevin Ellis, Brenden Lake, Josh Tenenbaum Moderator: Zenna Tavares Question:
|
Kevin Ellis · Judith Fan · Brenden Lake · Josh Tenenbaum · Zenna Tavares 🔗 |
-
|
Curiosity with Chelsea Finn, Celeste Kidd, Timothy Verstynen
(
Discussion panel
)
link »
SlidesLive Video » Panelists: Celeste Kidd, Chelsea Finn, Timothy Verstynen Moderator: Johnathan Flowers Questions:
|
Celeste Kidd · Chelsea Finn · Timothy Verstynen · Johnathan Flowers 🔗 |
-
|
Continual with Sujeeth Bharadwaj, Gabriel Silva, Eric Traut, Jane Wang
(
Discussion panel
)
link »
SlidesLive Video » Panelists: Jane Wang, Eric Traut, Gabriel Silva, Sujeeth Bharadwaj Moderator: Weiwei Yang Questions:
|
Sujeeth Bharadwaj · Jane Wang · Weiwei Yang 🔗 |
Author Information
Joshua T Vogelstein (The Johns Hopkins University)
Weiwei Yang (Microsoft Research Redmond)
Soledad Villar (Johns Hopkins)
Zenna Tavares (Columbia University)
Johnathan Flowers (Worcester State University)
Onyema Osuagwu (Morgan State University)
Weishung Liu (Microsoft Research)
More from the Same Authors
-
2021 : Compositional with Kevin Ellis, Judith Fan, Brenden Lake, Josh Tenenbaum »
Kevin Ellis · Judith Fan · Brenden Lake · Josh Tenenbaum · Zenna Tavares -
2021 : Curiosity with Chelsea Finn, Celeste Kidd, Timothy Verstynen »
Celeste Kidd · Chelsea Finn · Timothy Verstynen · Johnathan Flowers -
2021 : Continual with Sujeeth Bharadwaj, Gabriel Silva, Eric Traut, Jane Wang »
Sujeeth Bharadwaj · Jane Wang · Weiwei Yang -
2022 : The Value of Out-of-distribution Data »
Ashwin De Silva · Rahul Ramesh · Carey E Priebe · Pratik Chaudhari · Joshua T Vogelstein -
2021 : Live Q&A Session 2 with Susan Athey, Yoshua Bengio, Sujeeth Bharadwaj, Jane Wang, Joshua Vogelstein, Weiwei Yang »
Susan Athey · Yoshua Bengio · Sujeeth Bharadwaj · Jane Wang · Weiwei Yang · Joshua T Vogelstein -
2021 : General Discussion 2 - What does the OOD problem mean to you and your field? with Anima Anandkumar, Terry Sejnowski, Chris White: General Discussion 2 »
Anima Anandkumar · Terry Sejnowski · Weiwei Yang · Joshua T Vogelstein -
2021 : Extended Live Q&A Session and Learning Salon with Joshua Vogelstein »
Joshua T Vogelstein -
2021 : Live Q&A Session 1 with Yoshua Bengio, Leyla Isik, Konrad Kording, Bernhard Scholkopf, Amit Sharma, Joshua Vogelstein, Weiwei Yang »
Yoshua Bengio · Leyla Isik · Konrad Kording · Bernhard Schölkopf · Joshua T Vogelstein · Weiwei Yang -
2021 : General Discussion 1 - What is out of distribution (OOD) generalization and why is it important? with Yoshua Bengio, Leyla Isik, Max Welling »
Yoshua Bengio · Leyla Isik · Max Welling · Joshua T Vogelstein · Weiwei Yang -
2021 : Introduction »
Weiwei Yang · Joshua T Vogelstein · Onyema Osuagwu · Soledad Villar · Johnathan Flowers · Weishung Liu · Ronan Perry · Kaleab Alemayehu Kinfu · Teresa Huang -
2021 Workshop: Databases and AI (DBAI) »
Nikolaos Vasiloglou · Parisa Kordjamshidi · Zenna Tavares · Maximilian Schleich · Nantia Makrynioti · Kirk Pruhs -
2021 Poster: Scalars are universal: Equivariant machine learning, structured like classical physics »
Soledad Villar · David W Hogg · Kate Storey-Fisher · Weichi Yao · Ben Blum-Smith -
2020 Poster: Can Graph Neural Networks Count Substructures? »
Zhengdao Chen · Lei Chen · Soledad Villar · Joan Bruna -
2017 Workshop: BigNeuro 2017: Analyzing brain data from nano to macroscale »
Eva Dyer · Gregory Kiar · William Gray Roncal · · Konrad P Koerding · Joshua T Vogelstein -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2015 Workshop: BigNeuro 2015: Making sense of big neural data »
Eva Dyer · Joshua T Vogelstein · Konrad Koerding · Jeremy Freeman · Andreas S. Tolias -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden