Timezone: »
Session
Orals & Spotlights Track 18: Deep Learning
Yale Song · Dinesh Jayaraman
Wed Dec 09 06:00 AM -- 09:00 AM (PST) @
Author Information
Yale Song (Microsoft Research)
Dinesh Jayaraman (University of Pennsylvania)
I am an assistant professor at UPenn’s GRASP lab. I lead the Perception, Action, and Learning (PAL) Research Group, where we work on problems at the intersection of computer vision, machine learning, and robotics.
More from the Same Authors
-
2020 : Paper 50: Diverse Sampling for Flow-Based Trajectory Forecasting »
Jason Yecheng Ma · Jeevana Priya Inala · Dinesh Jayaraman · Osbert Bastani -
2021 : Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning »
Jason Yecheng Ma · Andrew Shen · Osbert Bastani · Dinesh Jayaraman -
2021 : Object Representations Guided By Optical Flow »
Jianing Qian · Dinesh Jayaraman -
2021 : Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning »
Jason Yecheng Ma · Andrew Shen · Osbert Bastani · Dinesh Jayaraman -
2021 : Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning »
Jason Yecheng Ma · Andrew Shen · Osbert Bastani · Dinesh Jayaraman -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Yecheng Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Yecheng Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : Learning a Meta-Controller for Dynamic Grasping »
Yinsen Jia · Jingxi Xu · Dinesh Jayaraman · Shuran Song -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Yecheng Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : Policy Aware Model Learning via Transition Occupancy Matching »
Jason Yecheng Ma · Kausik Sivakumar · Osbert Bastani · Dinesh Jayaraman -
2022 : VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Yecheng Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : Learning a Meta-Controller for Dynamic Grasping »
Yinsen Jia · Jingxi Xu · Dinesh Jayaraman · Shuran Song -
2023 Poster: Ego4D Goal-Step: Toward Hierarchical Understanding of Procedural Activities »
Yale Song · Eugene Byrne · Tushar Nagarajan · Huiyu Wang · Miguel Martin · Lorenzo Torresani -
2022 : Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training »
Jason Yecheng Ma · Shagun Sodhani · Dinesh Jayaraman · Osbert Bastani · Vikash Kumar · Amy Zhang -
2022 : PatchBlender: A Motion Prior for Video Transformers »
Gabriele Prato · Yale Song · Janarthanan Rajendran · R Devon Hjelm · Neel Joshi · Sarath Chandar -
2022 Workshop: Self-Supervised Learning: Theory and Practice »
Ishan Misra · Pengtao Xie · Gul Varol · Yale Song · Yuki Asano · Xiaolong Wang · Pauline Luc -
2022 Poster: Offline Goal-Conditioned Reinforcement Learning via $f$-Advantage Regression »
Jason Yecheng Ma · Jason Yan · Dinesh Jayaraman · Osbert Bastani -
2021 Poster: Contrastive Learning of Global and Local Video Representations »
shuang ma · Zhaoyang Zeng · Daniel McDuff · Yale Song -
2021 Poster: Conservative Offline Distributional Reinforcement Learning »
Jason Yecheng Ma · Dinesh Jayaraman · Osbert Bastani -
2021 : Live Q&A session: Yale Song (Microsoft Research) »
Yale Song -
2021 : Invited Talk: Yale Song (Microsoft Research) »
Yale Song -
2020 Poster: Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors »
Karl Pertsch · Oleh Rybkin · Frederik Ebert · Shenghao Zhou · Dinesh Jayaraman · Chelsea Finn · Sergey Levine -
2020 Poster: Fighting Copycat Agents in Behavioral Cloning from Observation Histories »
Chuan Wen · Jierui Lin · Trevor Darrell · Dinesh Jayaraman · Yang Gao -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 Poster: Characterizing Bias in Classifiers using Generative Models »
Daniel McDuff · Shuang Ma · Yale Song · Ashish Kapoor