Timezone: »
As deep learning is applied to high stakes scenarios, it is increasingly important that a model is not only making accurate decisions, but doing so for the right reasons. Common explainability methods provide pixel attributions as an explanation for a model's decision on a single image; however, using input-level explanations to understand patterns in model behavior is challenging for large datasets as it requires selecting and analyzing an interesting subset of inputs. Utilizing human generated ground truth object locations, we introduce metrics for ranking inputs based on the correspondence between the input’s ground truth location and the explainability method’s explanation region. Our methodology is agnostic to model architecture, explanation method, and dataset allowing it to be applied to many tasks. We demo our method on two high profile scenarios: a widely used image classification model and a melanoma prediction model, showing it surfaces patterns in model behavior by aligning model explanations with human annotations.
Author Information
Angie Boggust (MIT)
Benjamin Hoover (IBM Research)
Arvind Satyanarayan (MIT CSAIL)
Hendrik Strobelt (IBM Research)
More from the Same Authors
-
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2023 Poster: Energy-based Attention for Associative Memory »
Benjamin Hoover · Yuchen Liang · Bao Pham · Rameswar Panda · Hendrik Strobelt · Duen Horng Chau · Mohammed Zaki · Dmitry Krotov -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2021 : Interactive Exploration for 60 Years of AI Research »
Hendrik Strobelt · Benjamin Hoover -
2020 Poster: CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models »
Vijil Chenthamarakshan · Payel Das · Samuel Hoffman · Hendrik Strobelt · Inkit Padhi · Kar Wai Lim · Benjamin Hoover · Matteo Manica · Jannis Born · Teodoro Laino · Aleksandra Mojsilovic -
2020 Demonstration: LMdiff: A Visual Diff Tool to Compare LanguageModels »
Hendrik Strobelt · Benjamin Hoover · Arvind Satyanarayan · Sebastian Gehrmann -
2019 Demonstration: exBERT: A Visual Analysis Tool to Explain BERT's Learned Representations »
Benjamin Hoover · Hendrik Strobelt · Sebastian Gehrmann