Timezone: »
Engineering applications typically require a mathematical reduction of complex physical model to a more simplistic representation, unfortunately this simplification typically leads to a missing physics problem. In this work we introduce a state space solution to recovering the hidden physics by sharing information between different operating scenarios, referred to as ``tasks''. We introduce an approximation that ensures the resulting model scales linearly in the number of tasks, and provide theoretical guarantees that this solution will exist for sufficiently small time-steps. Finally we demonstrate how this framework may be used to improve the prediction of Lithium-ion concentration in electric batteries.
Author Information
Daniel Tait (University of Warwick)
Ferran Brosa Planella (University of Warwick)
Widanalage Dhammika Widanage (University of Warwick)
Theodoros Damoulas (University of Warwick & The Alan Turing Institute)
More from the Same Authors
-
2020 : Model Order Reduction using a Deep Orthogonal Decomposition »
Daniel Tait -
2021 : Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap »
Harita Dellaporta · Jeremias Knoblauch · Theodoros Damoulas · Francois-Xavier Briol -
2021 Poster: Dynamic Causal Bayesian Optimization »
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas -
2021 Poster: Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic Processes »
Cristopher Salvi · Maud Lemercier · Chong Liu · Blanka Horvath · Theodoros Damoulas · Terry Lyons -
2021 Poster: Spatio-Temporal Variational Gaussian Processes »
Oliver Hamelijnck · William Wilkinson · Niki Loppi · Arno Solin · Theodoros Damoulas -
2020 Poster: Generalised Bayesian Filtering via Sequential Monte Carlo »
Ayman Boustati · Omer Deniz Akyildiz · Theodoros Damoulas · Adam Johansen -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps -
2019 Poster: Multi-resolution Multi-task Gaussian Processes »
Oliver Hamelijnck · Theodoros Damoulas · Kangrui Wang · Mark Girolami -
2018 Poster: Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with $\beta$-Divergences »
Jeremias Knoblauch · Jack E Jewson · Theodoros Damoulas -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie