Timezone: »
A common pattern of progress in engineering has seen deep neural networks displacing human-designed logic. There are many advantages to this approach, divorcing decisionmaking from human oversight and intuition has costs as well. One is that deep neural networks can map similar inputs to very different outputs in a way that makes their application to safety-critical problem problematic.
We present a method to check that the decisions of a deep neural network are as intended by constructing the exact preimage of its predictions. Preimages generalize verification in the sense that they can be used to verify a wide class of properties, and answer much richer questions besides. We examine the functioning of an aircraft collision avoidance system, and show how exact preimages reduce undue conservatism when examining dynamic safety.
Our method iterates backwards through the layers of piecewise linear deep neural networks. Uniquely, we compute \emph{all} intermediate values that correspond to a prediction, propagating this calculation through layers using analytical formulae for layer preimages.
Author Information
Kyle Matoba (EPFL)
François Fleuret (University of Geneva)
François Fleuret got a PhD in Mathematics from INRIA and the University of Paris VI in 2000, and an Habilitation degree in Mathematics from the University of Paris XIII in 2006. He is Full Professor in the department of Computer Science at the University of Geneva, and Adjunct Professor in the School of Engineering of the École Polytechnique Fédérale de Lausanne. He has published more than 80 papers in peer-reviewed international conferences and journals. He is Associate Editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence, serves as Area Chair for NeurIPS, AAAI, and ICCV, and in the program committee of many top-tier international conferences in machine learning and computer vision. He was or is expert for multiple funding agencies. He is the inventor of several patents in the field of machine learning, and co-founder of Neural Concept SA, a company specializing in the development and commercialization of deep learning solutions for engineering design. His main research interest is machine learning, with a particular focus on computational aspects and sample efficiency.
More from the Same Authors
-
2021 : Test time Adaptation through Perturbation Robustness »
Prabhu Teja Sivaprasad · François Fleuret -
2022 : Deformations of Boltzmann Distributions »
Bálint Máté · François Fleuret -
2022 : Diversity through Disagreement for Better Transferability »
Matteo Pagliardini · Martin Jaggi · François Fleuret · Sai Praneeth Karimireddy -
2023 Poster: Faster Causal Attention Over Large Sequences Through Sparse Flash Attention »
Matteo Pagliardini · Daniele Paliotta · Martin Jaggi · François Fleuret -
2023 Poster: SUPA: A Lightweight Diagnostic Simulator for Machine Learning in Particle Physics »
Atul Kumar Sinha · Daniele Paliotta · Bálint Máté · John Raine · Tobias Golling · François Fleuret -
2022 : Transformers are Sample-Efficient World Models »
Vincent Micheli · Eloi Alonso · François Fleuret -
2022 Poster: Flowification: Everything is a normalizing flow »
Bálint Máté · Samuel Klein · Tobias Golling · François Fleuret -
2022 Poster: Efficient Training of Low-Curvature Neural Networks »
Suraj Srinivas · Kyle Matoba · Himabindu Lakkaraju · François Fleuret -
2020 Poster: Fast Transformers with Clustered Attention »
Apoorv Vyas · Angelos Katharopoulos · François Fleuret -
2019 Poster: Reducing Noise in GAN Training with Variance Reduced Extragradient »
Tatjana Chavdarova · Gauthier Gidel · François Fleuret · Simon Lacoste-Julien -
2019 Demonstration: Real Time CFD simulations with 3D Mesh Convolutional Networks »
Pierre Baque · Pascal Fua · François Fleuret -
2019 Poster: Full-Gradient Representation for Neural Network Visualization »
Suraj Srinivas · François Fleuret -
2018 Poster: Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching »
Stepan Tulyakov · Anton Ivanov · François Fleuret -
2017 Poster: K-Medoids For K-Means Seeding »
James Newling · François Fleuret -
2017 Spotlight: K-Medoids For K-Means Seeding »
James Newling · François Fleuret -
2016 Poster: Nested Mini-Batch K-Means »
James Newling · François Fleuret -
2015 Poster: Kullback-Leibler Proximal Variational Inference »
Mohammad Emtiyaz Khan · Pierre Baque · François Fleuret · Pascal Fua -
2014 Demonstration: A 3D Simulator for Evaluating Reinforcement and Imitation Learning Algorithms on Complex Tasks »
Leonidas Lefakis · François Fleuret · Cijo Jose -
2013 Poster: Reservoir Boosting : Between Online and Offline Ensemble Learning »
Leonidas Lefakis · François Fleuret -
2011 Poster: Boosting with Maximum Adaptive Sampling »
Charles Dubout · François Fleuret -
2010 Demonstration: Platform to Share Feature Extraction Methods »
François Fleuret -
2010 Poster: Joint Cascade Optimization Using A Product Of Boosted Classifiers »
Leonidas Lefakis · François Fleuret