Timezone: »
Scientists and engineers are often interested in learning the number of subpopulations (or components) present in a data set. Data science folk wisdom tells us that a finite mixture model (FMM) with a prior on the number of components will fail to recover the true, data-generating number of components under model misspecification. But practitioners still widely use FMMs to learn the number of components, and statistical machine learning papers can be found recommending such an approach. Increasingly, though, data science papers suggest potential alternatives beyond vanilla FMMs, such as power posteriors, coarsening, and related methods. In this work we start by adding rigor to folk wisdom and proving that, under even the slightest model misspecification, the FMM component-count posterior diverges: the posterior probability of any particular finite number of latent components converges to 0 in the limit of infinite data. We use the same theoretical techniques to show that power posteriors with fixed power face the same undesirable divergence, and we provide a proof for the case where the power converges to a non-zero constant. We illustrate the practical consequences of our theory on simulated and real data. We conjecture how our methods may be applied to lend insight into other component-count robustification techniques.
Author Information
Diana Cai (Princeton University)
I am a PhD student at Princeton University. I work in the area of probabilistic modeling and Bayesian nonparametrics.
More from the Same Authors
-
2021 Spotlight: Slice Sampling Reparameterization Gradients »
David Zoltowski · Diana Cai · Ryan Adams -
2022 : Multi-fidelity Bayesian experimental design using power posteriors »
Andrew Jones · Diana Cai · Barbara Engelhardt -
2022 : Kernel Density Bayesian Inverse Reinforcement Learning »
Aishwarya Mandyam · Didong Li · Diana Cai · Andrew Jones · Barbara Engelhardt -
2022 Poster: Multi-fidelity Monte Carlo: a pseudo-marginal approach »
Diana Cai · Ryan Adams -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2021 : Welcome remarks »
Diana Cai -
2021 Poster: Slice Sampling Reparameterization Gradients »
David Zoltowski · Diana Cai · Ryan Adams -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2018 Poster: A Bayesian Nonparametric View on Count-Min Sketch »
Diana Cai · Michael Mitzenmacher · Ryan Adams -
2016 Poster: Edge-exchangeable graphs and sparsity »
Diana Cai · Trevor Campbell · Tamara Broderick -
2015 : Edge-exchangeable graphs, sparsity, and power laws »
Diana Cai