Timezone: »
It is widely believed that natural image data exhibits low-dimensional structure despite being embedded in a high-dimensional pixel space. This idea underlies a common intuition for the success of deep learning and has been exploited for enhanced regularization and adversarial robustness. In this work, we apply dimension estimation tools to popular datasets and investigate the role of low dimensional structure in neural network learning. We find that common natural image datasets indeed have very low intrinsic dimension relative to the high number of pixels in the images. Additionally, we find that low dimensional datasets are easier for neural networks to learn. We validate our findings by carefully-designed experiments to vary the intrinsic dimension of both synthetic and real data and evaluate its impact on sample complexity.
Author Information
Chen Zhu (University of Maryland)
Micah Goldblum (UMD)
Ahmed Abdelkader (University of Maryland, College Park)
Tom Goldstein (University of Maryland)
Phillip Pope (University of Maryland, College Park)
More from the Same Authors
-
2020 : An Open Review of OpenReview: A Critical Analysis of the Machine Learning Conference Review Process »
David Tran · Alex Valtchanov · Keshav R Ganapathy · Raymond Feng · Eric Slud · Micah Goldblum · Tom Goldstein -
2021 : Execute Order 66: Targeted Data Poisoning for Reinforcement Learning via Minuscule Perturbations »
Harrison Foley · Liam Fowl · Tom Goldstein · Gavin Taylor -
2021 : Diurnal or Nocturnal? Federated Learning from Periodically Shifting Distributions »
Chen Zhu · Zheng Xu · Mingqing Chen · Jakub Konečný · Andrew S Hard · Tom Goldstein -
2021 Poster: VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization »
Mucong Ding · Kezhi Kong · Jingling Li · Chen Zhu · John Dickerson · Furong Huang · Tom Goldstein -
2021 Poster: GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training »
Chen Zhu · Renkun Ni · Zheng Xu · Kezhi Kong · W. Ronny Huang · Tom Goldstein -
2021 Poster: Long-Short Transformer: Efficient Transformers for Language and Vision »
Chen Zhu · Wei Ping · Chaowei Xiao · Mohammad Shoeybi · Tom Goldstein · Anima Anandkumar · Bryan Catanzaro -
2020 Workshop: Workshop on Dataset Curation and Security »
Nathalie Baracaldo Angel · Yonatan Bisk · Avrim Blum · Michael Curry · John Dickerson · Micah Goldblum · Tom Goldstein · Bo Li · Avi Schwarzschild -
2020 Poster: Detection as Regression: Certified Object Detection with Median Smoothing »
Ping-yeh Chiang · Michael Curry · Ahmed Abdelkader · Aounon Kumar · John Dickerson · Tom Goldstein -
2020 Poster: Certifying Confidence via Randomized Smoothing »
Aounon Kumar · Alexander Levine · Soheil Feizi · Tom Goldstein -
2020 Poster: Adversarially Robust Few-Shot Learning: A Meta-Learning Approach »
Micah Goldblum · Liam Fowl · Tom Goldstein -
2020 Poster: MetaPoison: Practical General-purpose Clean-label Data Poisoning »
W. Ronny Huang · Jonas Geiping · Liam Fowl · Gavin Taylor · Tom Goldstein -
2020 Poster: Large-Scale Adversarial Training for Vision-and-Language Representation Learning »
Zhe Gan · Yen-Chun Chen · Linjie Li · Chen Zhu · Yu Cheng · Jingjing Liu -
2020 Spotlight: Large-Scale Adversarial Training for Vision-and-Language Representation Learning »
Zhe Gan · Yen-Chun Chen · Linjie Li · Chen Zhu · Yu Cheng · Jingjing Liu -
2020 Poster: Certifying Strategyproof Auction Networks »
Michael Curry · Ping-yeh Chiang · Tom Goldstein · John Dickerson -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Adversarial training for free! »
Ali Shafahi · Mahyar Najibi · Mohammad Amin Ghiasi · Zheng Xu · John Dickerson · Christoph Studer · Larry Davis · Gavin Taylor · Tom Goldstein -
2018 Poster: Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks »
Ali Shafahi · W. Ronny Huang · Mahyar Najibi · Octavian Suciu · Christoph Studer · Tudor Dumitras · Tom Goldstein -
2018 Poster: Visualizing the Loss Landscape of Neural Nets »
Hao Li · Zheng Xu · Gavin Taylor · Christoph Studer · Tom Goldstein -
2017 Poster: Training Quantized Nets: A Deeper Understanding »
Hao Li · Soham De · Zheng Xu · Christoph Studer · Hanan Samet · Tom Goldstein -
2015 : Spotlight »
Furong Huang · William Gray Roncal · Tom Goldstein -
2015 Poster: Adaptive Primal-Dual Splitting Methods for Statistical Learning and Image Processing »
Tom Goldstein · Min Li · Xiaoming Yuan