Timezone: »
We study the problem of finding distance-preserving graph representations. Most previous approaches focus on learning continuous embeddings in metric spaces such as Euclidean or hyperbolic spaces. Based on the observation that embedding into a metric space is not necessary to produce faithful representations, we explore a new conceptual approach to represent graphs using a collection of trees, namely a tree cover. We show that with the same amount of storage, covers achieve lower distortion than learned metric embeddings. While the distance induced by covers is not a metric, we find that tree covers still have the desirable properties of graph representations, including efficiency in query and construction time.
Author Information
Roshni Sahoo (Stanford University)
Ines Chami (Stanford University)
Christopher Ré (Stanford)
More from the Same Authors
-
2021 : Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations »
Michael Zhang · Nimit Sohoni · Hongyang Zhang · Chelsea Finn · Christopher Ré -
2022 Spotlight: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 Poster: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2021 : Alex Ratner and Chris Re - The Future of Data Centric AI »
Christopher Ré -
2021 Poster: Scatterbrain: Unifying Sparse and Low-rank Attention »
Beidi Chen · Tri Dao · Eric Winsor · Zhao Song · Atri Rudra · Christopher Ré -
2021 Poster: Reliable Decisions with Threshold Calibration »
Roshni Sahoo · Shengjia Zhao · Alyssa Chen · Stefano Ermon -
2021 Poster: Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration »
Shengjia Zhao · Michael Kim · Roshni Sahoo · Tengyu Ma · Stefano Ermon -
2020 : Focused Breakout Session »
Ines Chami · Joey Bose -
2020 : Panel Discussion »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami -
2020 : Poster Session 1 on Gather.Town »
Joey Bose · Ines Chami -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher Ré · Will Hamilton -
2020 Poster: From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering »
Ines Chami · Albert Gu · Vaggos Chatziafratis · Christopher Ré -
2020 Poster: No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems »
Nimit Sohoni · Jared Dunnmon · Geoffrey Angus · Albert Gu · Christopher Ré -
2019 : Poster Session #2 »
Yunzhu Li · Peter Meltzer · Jianing Sun · Guillaume SALHA · Marin Vlastelica Pogančić · Chia-Cheng Liu · Fabrizio Frasca · Marc-Alexandre Côté · Vikas Verma · Abdulkadir CELIKKANAT · Pierluca D'Oro · Priyesh Vijayan · Maria Schuld · Petar Veličković · Kshitij Tayal · Yulong Pei · Hao Xu · Lei Chen · Pengyu Cheng · Ines Chami · Dongkwan Kim · Guilherme Gomes · Lukasz Maziarka · Jessica Hoffmann · Ron Levie · Antonia Gogoglou · Shunwang Gong · Federico Monti · Wenlin Wang · Yan Leng · Salvatore Vivona · Daniel Flam-Shepherd · Chester Holtz · Li Zhang · MAHMOUD KHADEMI · I-Chung Hsieh · Aleksandar Stanić · Ziqiao Meng · Yuhang Jiao -
2019 Poster: Hyperbolic Graph Convolutional Neural Networks »
Ines Chami · Zhitao Ying · Christopher Ré · Jure Leskovec -
2016 Poster: Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much »
Bryan He · Christopher M De Sa · Ioannis Mitliagkas · Christopher Ré -
2016 Poster: Data Programming: Creating Large Training Sets, Quickly »
Alexander Ratner · Christopher M De Sa · Sen Wu · Daniel Selsam · Christopher Ré -
2015 : Hardware Trends for High Performance Analytics »
Christopher Ré -
2015 : Taking it Easy »
Christopher Ré -
2015 Spotlight: Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré · Christopher Ré -
2015 Poster: Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré · Christopher Ré