Timezone: »

 
Quaternion Graph Neural Networks
Dai Quoc Nguyen · Tu Dinh Nguyen · Dinh Phung

Fri Dec 11 08:30 AM -- 09:30 AM (PST) @

Recently, graph neural networks (GNNs) become a principal research direction to learn low-dimensional continuous embeddings of nodes and graphs to predict node and graph labels, respectively. However, Euclidean embeddings have high distortion when using GNNs to model complex graphs such as social networks. Furthermore, existing GNNs are not very efficient with the high number of model parameters when increasing the number of hidden layers. Therefore, we move beyond the Euclidean space to a hyper-complex vector space to improve graph representation quality and reduce the number of model parameters. To this end, we propose quaternion graph neural networks (QGNN) to generalize GCNs within the Quaternion space to learn quaternion embeddings for nodes and graphs. The Quaternion space, a hyper-complex vector space, provides highly meaningful computations through Hamilton product compared to the Euclidean and complex vector spaces. As a result, our QGNN can reduce the model size up to four times and enhance learning better graph representations. Experimental results show that the proposed QGNN produces state-of-the-art accuracies on a range of well-known benchmark datasets for three downstream tasks, including graph classification, semi-supervised node classification, and text (node) classification.

Author Information

Dai Quoc Nguyen (Monash University)
Tu Dinh Nguyen (Trusting Social)
Dinh Phung (Monash University)

More from the Same Authors

  • 2022 Poster: MoVQ: Modulating Quantized Vectors for High-Fidelity Image Generation »
    Chuanxia Zheng · Tung-Long Vuong · Jianfei Cai · Dinh Phung
  • 2023 Poster: Model and Feature Diversity for Bayesian Neural Networks in Mutual Learning »
    Cuong Pham · Cuong C Nguyen · Trung Le · Dinh Phung · Gustavo Carneiro · Thanh-Toan Do
  • 2023 Poster: Flat Seeking Bayesian Neural Networks »
    Van-Anh Nguyen · Tung-Long Vuong · Hoang Phan · Thanh-Toan Do · Dinh Phung · Trung Le
  • 2023 Poster: Optimal Transport Model Distributional Robustness »
    Van-Anh Nguyen · Trung Le · Anh Bui · Thanh-Toan Do · Dinh Phung
  • 2022 Spotlight: Lightning Talks 6B-4 »
    Junjie Chen · Chuanxia Zheng · JINLONG LI · Yu Shi · Shichao Kan · Yu Wang · Fermín Travi · Ninh Pham · Lei Chai · Guobing Gan · Tung-Long Vuong · Gonzalo Ruarte · Tao Liu · Li Niu · Jingjing Zou · Zequn Jie · Peng Zhang · Ming LI · Yixiong Liang · Guolin Ke · Jianfei Cai · Gaston Bujia · Sunzhu Li · Siyuan Zhou · Jingyang Lin · Xu Wang · Min Li · Zhuoming Chen · Qing Ling · Xiaolin Wei · Xiuqing Lu · Shuxin Zheng · Dinh Phung · Yigang Cen · Jianlou Si · Juan Esteban Kamienkowski · Jianxin Wang · Chen Qian · Lin Ma · Benyou Wang · Yingwei Pan · Tie-Yan Liu · Liqing Zhang · Zhihai He · Ting Yao · Tao Mei
  • 2022 Spotlight: MoVQ: Modulating Quantized Vectors for High-Fidelity Image Generation »
    Chuanxia Zheng · Tung-Long Vuong · Jianfei Cai · Dinh Phung
  • 2022 Poster: Stochastic Multiple Target Sampling Gradient Descent »
    Hoang Phan · Ngoc Tran · Trung Le · Toan Tran · Nhat Ho · Dinh Phung
  • 2021 Poster: Exploiting Domain-Specific Features to Enhance Domain Generalization »
    Manh-Ha Bui · Toan Tran · Anh Tran · Dinh Phung
  • 2021 Poster: On Learning Domain-Invariant Representations for Transfer Learning with Multiple Sources »
    Trung Phung · Trung Le · Tung-Long Vuong · Toan Tran · Anh Tran · Hung Bui · Dinh Phung
  • 2020 : QuatRE: Relation-Aware Quaternions for Knowledge Graph Embeddings »
    Dai Quoc Nguyen · Dinh Phung
  • 2020 Poster: OTLDA: A Geometry-aware Optimal Transport Approach for Topic Modeling »
    Viet Huynh · He Zhao · Dinh Phung
  • 2019 : Poster session »
    Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak